Skip to main content

Advertisement

Log in

Improved specificity of serum phosphatidylcholine detection based on side-chain losses during negative electrospray ionization tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Many current tandem mass spectrometry (MS) methods for measuring phosphatidylcholines (PtdChos) rely only on precursor ion scanning of the common 184 m/z phosphocholine fragment with positive electrospray ionization (+ESI), and thus measure pools of PtdChos rather than specific isoforms. In this paper, we developed and compared an isotope dilution, tandem MS method capable of quantifying PtdChos based on specific fatty acid side-chains to the traditional 184 m/z method. The method is based on the detection of PtdCho ammonium formate (AmF) adduct as parent ions and fatty acid fragment daughter ions under negative electrospray ionization (−ESI). Accuracy, imprecision, and recovery were below 15 %, with acceptable linearity (R 2 > 0.99) up to 5 μg/mL. We used the method to analyze the distributions of PtdChos with common side-chain combinations among 60 subjects and showed that it was possible for two individuals to have the same PtdCho pool concentration based on detection of the 184 m/z fragment, but up to a fourfold difference in the levels of specific isoforms comprising the pool based on our method. We then compared the results of both methods across 572 patients with mild cognitive impairment (MCI), Alzheimer’s disease (AD), or no impairment (NI), which showed that statistically significant associations between specific PtdCho isoforms and AD were masked with the 184 m/z method. Our findings demonstrate the importance of isoform specificity for quantifying PtdChos, and suggest caution when interpreting analytical data based on pools of biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van Meer G, Voelker D, Feigenson G. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24. doi:10.1038/nrm2330.

    Article  Google Scholar 

  2. Patra S. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta. 2007. doi:10.1016/j.bbcan.2007.11.002.

    Google Scholar 

  3. Koeberle A, Shindou H, Koeberle SC, Laufer SA, Shimizu T, Werz O. Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proc Natl Acad Sci U S A. 2013;110(7):2546–51. doi:10.1073/pnas.1216182110.

    Article  CAS  Google Scholar 

  4. Ridgway ND. The role of phosphatidylcholine and choline metabolites to cell proliferation and survival. Crit Rev Biochem Mol Biol. 2013;48(1):20–38. doi:10.3109/10409238.2012.735643.

    Article  CAS  Google Scholar 

  5. Eliyahu G, Kreizman T, Degani H. Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer. 2007;120(8):1721–30. doi:10.1002/ijc.22293.

    Article  CAS  Google Scholar 

  6. Beloueche-Babari M, Peak JC, Jackson LE, Tiet MY, Leach MO, Eccles SA. Changes in choline metabolism as potential biomarkers of phospholipase C{gamma}1 inhibition in human prostate cancer cells. Mol Cancer Ther. 2009;8(5):1305–11. doi:10.1158/1535-7163.MCT-09-0039.

    Article  CAS  Google Scholar 

  7. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20(4):415–8. doi:10.1038/nm.3466.

    Article  CAS  Google Scholar 

  8. Ko M, Hattori T, Abdullah M, Gong JS, Yamane T, Michikawa M. Phosphatidylcholine protects neurons from toxic effects of amyloid beta-protein in culture. Brain Res. 2016;1642:376–83. doi:10.1016/j.brainres.2016.04.035.

    Article  CAS  Google Scholar 

  9. Klavins K, Koal T, Dallmann G, Marksteiner J, Kemmler G, Humpel C. The ratio of phosphatidylcholines to lysophosphatidylcholines in plasma differentiates healthy controls from patients with Alzheimer’s disease and mild cognitive impairment. Alzheimers Dement (Amst). 2015;1(3):295–302. doi:10.1016/j.dadm.2015.05.003.

    Google Scholar 

  10. Siddiqui R, Harvey K, Zaloga G, Stillwell W. Modulation of lipid rafts by omega-3 fatty acids in inflammation and cancer: implications for use of lipids during nutrition support. Nutr Clin Pract. 2007;22(1):74–88.

    Article  Google Scholar 

  11. Stillwell W, Wassall S. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids. 2003;126(1):1–27.

    Article  CAS  Google Scholar 

  12. Ma D. Lipid mediators in membrane rafts are important determinants of human health and disease. Appl Physiol Nutr Metab. 2007;32(3):341–50. doi:10.1139/h07-036.

    Article  CAS  Google Scholar 

  13. Ruiz-Cabello J, Cohen JS. Phospholipid metabolites as indicators of cancer cell function. NMR Biomed. 1992;5(5):226–33.

    Article  CAS  Google Scholar 

  14. Teichert F, Verschoyle R, Greaves P, Edwards R, Teahan O, Jones D, et al. Metabolic profiling of transgenic adenocarcinoma of mouse prostate (TRAMP) tissue by 1H-NMR analysis: evidence for unusual phospholipid metabolism. Prostate. 2008;68(10):1035–47. doi:10.1002/pros.20761.

    Article  CAS  Google Scholar 

  15. Ackerstaff E, Glunde K, Bhujwalla Z. Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem. 2003;90(3):525–33.

    Article  CAS  Google Scholar 

  16. Turk J, Hsu F, Bohrer A. Formation of lithiated adducts of glycerophosphocholine lipids facilitates their identification by electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectrom. 1998;9:516–26.

    Article  Google Scholar 

  17. Mimmi MC, Finato N, Pizzolato G, Beltrami CA, Fogolari F, Corazza A, et al. Absolute quantification of choline-related biomarkers in breast cancer biopsies by liquid chromatography electrospray ionization mass spectrometry. Anal Cell Pathol. 2013;36(3–4):71–83. doi:10.3233/ACP-130082.

    Article  CAS  Google Scholar 

  18. Koc H, Mar MH, Ranasinghe A, Swenberg JA, Zeisel SH. Quantitation of choline and its metabolites in tissues and foods by liquid chromatography/electrospray ionization-isotope dilution mass spectrometry. Anal Chem. 2002;74(18):4734–40.

    Article  CAS  Google Scholar 

  19. Murphy R, Fiedler J, Hevko J. Analysis of nonvolatile lipids by mass spectrometry. Chem Rev. 2001;101(2):479–526.

    Article  CAS  Google Scholar 

  20. Kerwin J, Tuininga A, Ericsson R. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J Lipid Res. 1994 35(6):1102-1114.

  21. Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev. 2003;22(5):332–64. doi:10.1002/mas.10061.

    Article  CAS  Google Scholar 

  22. Myers DS, Ivanova PT, Milne SB, Brown HA. Quantitative analysis of glycerophospholipids by LC-MS: acquisition, data handling, and interpretation. Biochim Biophys Acta. 2011;1811(11):748–57. doi:10.1016/j.bbalip.2011.05.015.

    Article  CAS  Google Scholar 

  23. Ritchie SA, Akita H, Takemasa I, Eguchi H, Pastural E, Nagano H, et al. Metabolic system alterations in pancreatic cancer patient serum: potential for early detection. BMC Cancer. 2013;13:416. doi:10.1186/1471-2407-13-416.

    Article  Google Scholar 

  24. Mankidy R, Ahiahonu PW, Ma H, Jayasinghe D, Ritchie SA, Khan MA, et al. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study. Lipids Health Dis. 2010;9:62. doi:10.1186/1476-511X-9-62.

    Article  Google Scholar 

  25. Pastural E, Ritchie S, Lu Y, Jin W, Kavianpour A, Su-Myat KK, et al. Novel plasma phospholipid biomarkers of autism: mitochondrial dysfunction as a putative causative mechanism. Prostaglandins Leukot Essent Fat Acids. 2009;81(4):253–64. doi:10.1016/j.plefa.2009.06.003.

    Article  CAS  Google Scholar 

  26. Goodenowe D, Cook L, Liu J, Lu Y, Jayasinghe D, Ahiahonu P, et al. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer’s disease and dementia. J Lipid Res. 2007;48(11):2485–98. doi:10.1194/jlr.P700023-JLR200.

    Article  CAS  Google Scholar 

  27. Jourdan C, Petersen AK, Gieger C, Doring A, Illig T, Wang-Sattler R, et al. Body fat free mass is associated with the serum metabolite profile in a population-based study. PLoS One. 2012;7(6):e40009. doi:10.1371/journal.pone.0040009.

    Article  CAS  Google Scholar 

  28. Reinehr T, Wolters B, Knop C, Lass N, Hellmuth C, Harder U, et al. Changes in the serum metabolite profile in obese children with weight loss. Eur J Nutr. 2014. doi:10.1007/s00394-014-0698-8.

    Google Scholar 

  29. Oberbach A, Bluher M, Wirth H, Till H, Kovacs P, Kullnick Y, et al. Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. J Proteome Res. 2011;10(10):4769–88. doi:10.1021/pr2005555.

    Article  CAS  Google Scholar 

  30. Kosinska MK, Liebisch G, Lochnit G, Wilhelm J, Klein H, Kaesser U, et al. A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis Rheum. 2013;65(9):2323–33. doi:10.1002/art.38053.

    Article  CAS  Google Scholar 

  31. Gauss A, Ehehalt R, Lehmann WD, Erben G, Weiss KH, Schaefer Y, et al. Biliary phosphatidylcholine and lysophosphatidylcholine profiles in sclerosing cholangitis. World J Gastroenterol. 2013;19(33):5454–63. doi:10.3748/wjg.v19.i33.5454.

    Article  Google Scholar 

  32. Yang WL, Bai Q, Li DD, A TL, Wang S, Zhao RS, et al. Changes of urinary phospholipids in the chronic kidney disease patients. Biomarkers. 2013;18(7):601–6. doi:10.3109/1354750X.2013.837100.

    Article  CAS  Google Scholar 

  33. Bernhard W, Raith M, Koch V, Kunze R, Maas C, Abele H, et al. Plasma phospholipids indicate impaired fatty acid homeostasis in preterm infants. Eur J Nutr. 2014;53(7):1533–47. doi:10.1007/s00394-014-0658-3.

    Article  CAS  Google Scholar 

  34. Sasabe N, Keyamura Y, Obama T, Inoue N, Masuko Y, Igarashi Y, et al. Time course-changes in phosphatidylcholine profile during oxidative modification of low-density lipoprotein. Lipids Health Dis. 2014;13:48. doi:10.1186/1476-511X-13-48.

    Article  Google Scholar 

  35. Xiao Y, Chen Y, Kennedy AW, Belinson J, Xu Y. Evaluation of plasma lysophospholipids for diagnostic significance using electrospray ionization mass spectrometry (ESI-MS) analyses. Ann N Y Acad Sci. 2000;905:242–59.

    Article  CAS  Google Scholar 

  36. Liebisch G. High-throughput quantification of lysophosphatidylcholine by electrospray ionization tandem mass spectrometry. Clin Chem 2002 48(12):2217−2224.

  37. Berger J, Dorninger F, Forss-Petter S, Kunze M. Peroxisomes in brain development and function. Biochim Biophys Acta. 2016;1863(5):934–55. doi:10.1016/j.bbamcr.2015.12.005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Precision Medicine for providing the Alzheimer’s disease samples used in this study, and Dr. Vijitha Senanayake for his careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn A Ritchie.

Ethics declarations

Conflict of interest

All authors were employees of, and received salaries from, Phenomenome Discoveries, Inc.

Samples from patients with Alzheimer’s disease (AD, n = 204) and mild cognitive impairment (MCI, n = 210) and no cognitive impairment (NC, n = 158) were provided by Precision Medicine Inc (USA) according to the criteria from the National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA). All samples were collected under informed consent.

All studies described in this manuscript were approved by the appropriate ethics committee and were performed in accordance with ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 704 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritchie, S.A., Jayasinge, D., Wang, L. et al. Improved specificity of serum phosphatidylcholine detection based on side-chain losses during negative electrospray ionization tandem mass spectrometry. Anal Bioanal Chem 408, 7811–7823 (2016). https://doi.org/10.1007/s00216-016-9884-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9884-2

Keywords

Navigation