Skip to main content
Log in

SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface-assisted laser desorption/ionisation time-of-flight mass spectrometry (SALDI-TOF-MS) might be the method of choice for the analysis of low mass molecules (less than m/z 500). Titanium dioxide (TiO2) nanocrystals as a substrate for SALDI-TOF-MS improve the reproducibility of the signal intensities and prevent the fragmentation of some molecules upon laser irradiation, as we have previously shown. In addition, variously shaped and sized TiO2 nanocrystals/substrates for SALDI-MS could be used for quantification of small molecules, which are otherwise difficult to detect with the assistance of organic matrices. TiO2-assisted LDI-MS spectra could be acquired with excellent reproducibility and repeatability and with low detection limit. In the current study, we analysed the spectra of dexasone, citric acid, vitamin E and vitamin A acquired with TiO2 nanocrystals of various shapes and dimensions, i.e. the colloidal TiO2 nanoparticles (TiO2 NPs), TiO2 prolate nanospheroids (TiO2 PNSs) and TiO2 nanotubes (TiO2 NTs). Various shapes and dimensions of substrates were used since these factors determine desorption and ionisation processes. The homogeneity on the target plate was compared based on signal-to-noise values of peaks of interest of analysed molecules as well as the within-day and day-to-day repeatability. In summary, the obtained results show that the applicability of individual TiO2 nanocrystals depends on the analyte. Signals which are acquired with the assistance of TiO2 PNSs have the highest sensitivity and reproducibility (the smallest standard deviation), even compared with those in the LDI mode. This implies that TiO2 PNSs could also be suitable for quantitative analyses of small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ho YC, Tseng MC, Lu YW, Lin CC, Chen YJ, Fuh MR. Nanoparticle-assisted MALDI-TOF MS combined with seed-layer surface preparation for quantification of small molecules. Anal Chim Acta. 2011;697:1–7.

    Article  CAS  Google Scholar 

  2. Lee PJ, Chen W, Gebler JC. Qualitative and quantitative analysis of small amine molecules by MALDI-TOF mass spectrometry through charge derivatization. Anal Chem. 2004;76:4888–93.

    Article  CAS  Google Scholar 

  3. Gobey J, Cole M, Janiszewski J, Covey T, Chau T, Kovarik P, et al. Characterization and performance of MALDI on a triple quadrupole mass spectrometer for analysis and quantification of small molecules. Anal Chem. 2005;77:5643–54.

    Article  CAS  Google Scholar 

  4. Smirnov IP, Zhu X, Taylor T, Huang Y, Ross P, Papayanopoulos IA, et al. Suppression of α-cyano-4-hydroxycinnamic acid matrix clusters and reduction of chemical noise in MALDI-TOF mass spectrometry. Anal Chem. 2004;76:2958–65.

    Article  CAS  Google Scholar 

  5. Strupat K, Karas M, Hillenkamp F. 2,5-Dihydroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry. Int J Mass Spectrom Ion Process. 1991;111:89–102.

    Article  CAS  Google Scholar 

  6. Beavis RC, Bridson JN. Epitaxial protein inclusion in sinapic acid crystals. J Phys D Appl Phys. 1993;26:442–8.

    Article  CAS  Google Scholar 

  7. Shroff R, Rulíšek L, Doubský J, Svatoš A. Acid–base-driven matrix-assisted mass spectrometry for targeted metabolomics. Proc Natl Acad Sci. 2009;106:10092–6.

    Article  Google Scholar 

  8. Cegłowski M, Jasiecki S, Schroeder G. Laser desorption/ionization mass spectrometric analysis of folic acid, vancomycin and Triton® X-100 on variously functionalized carbon nanotubes. Rapid Commun Mass Spectrom. 2013;27:2631–8.

    Article  Google Scholar 

  9. Cohen LH, Gusev AI. Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem. 2002;373:571–86.

    Article  CAS  Google Scholar 

  10. Guo Z, Zhang Q, Zou H, Guo B, Ni J. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal Chem. 2002;74:1637–41.

    Article  CAS  Google Scholar 

  11. Buryak AK, Serdyuk TM. Physicochemical fundamentals of mass spectrometry with matrix/surface-assisted laser desorption/ionization for studies of inhibitors. Prot Met Phys Chem Surf. 2011;47:911–20.

    Article  CAS  Google Scholar 

  12. Cuiffi JD, Hayes DJ, Fonash SJ, Brown KN, Jones AD. Desorption/ionization mass spectrometry using deposited nanostructured silicon films. Anal Chem. 2001;73:1292–5.

    Article  CAS  Google Scholar 

  13. Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization time of flight mass spectrometry. Electrophoresis. 2000;21:1164–77.

    Article  CAS  Google Scholar 

  14. Ayorinde FO, Hambright P, Porter TN, Keith QL. Use of meso-tetrakis(pentafluorophenyl) porphyrin as a matrix for low molecular weight alkylphenol ethoxylates in laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1999;13:2474–9.

    Article  CAS  Google Scholar 

  15. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, Matsuo T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;8:151–3.

  16. Park KH, Kim HJ. Analysis of fatty acids by graphite plate laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2001;15:1494–9.

    Article  CAS  Google Scholar 

  17. Lai EPC, Owega S, Kulczycki R. Time-of-flight mass spectrometry of bioorganic molecules by laser ablation of silver thin film substrates and particles. J Mass Spectrom. 1998;33:554–64.

    Article  Google Scholar 

  18. Zhang Q, Zou H, Guo Z, Zhang Q, Chen X, Ni J. Matrix-assisted laser desorption/ionization mass spectrometry using porous silicon and silica gel as matrix. Rapid Commun Mass Spectrom. 2001;15:217–23.

    Article  CAS  Google Scholar 

  19. Wu JY, Chen YC. A novel approach of combining thin-layer chromatography with surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry. J Mass Spectrom. 2002;37:85–90.

    Article  CAS  Google Scholar 

  20. Chen YC, Tsai MF. A novel approach of combining thin-layer chromatography with surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry. J Mass Spectrom. 2000;35:1278–84.

    Article  CAS  Google Scholar 

  21. Liu Y, Liu J, Deng C, Zhang X. Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference. Rapid Commun Mass Spectrom. 2011;25:3223–34.

    Article  CAS  Google Scholar 

  22. Okuno S, Nakano M, Matsubayashi G, Arakawa R, Wada Y. Reduction of organic dyes in matrix-assisted laser desorption/ionization and desorption/ionization on porous silicon. Rapid Commun Mass Spectrom. 2004;18:2811–7.

    Article  CAS  Google Scholar 

  23. Kawasaki H, Ozawa T, Hisatomi H, Arakawa R. Platinum vapor deposition surface-assisted laser desorption/ionization for imaging mass spectrometry of small molecules. Rapid Commun Mass Spectrom. 2012;26:1849–58.

    Article  CAS  Google Scholar 

  24. Jaschinski T, Svatoš A, Pohnert G. Laser desorption/ionization mediated by bionanostructures from microalgae. Rapid Commun Mass Spectrom. 2013;27:109–16.

    Article  CAS  Google Scholar 

  25. Popović I, Nešić M, Nišavić M, Vranješ M, Radetić T, Šaponjić Z, et al. Suitability of TiO2 nanoparticles and prolate nanospheroids for laser desorption/ionization mass spectrometric characterization of bipyridine-containing complexes. Mater Lett. 2015;150:84–8.

    Article  Google Scholar 

  26. Radisavljević M, Kamčeva T, Vukićević I, Radoičić M, Šaponjić Z, Petković M. Colloidal TiO2 nanoparticles as substrates for M(S)ALDI mass spectrometry of transition metal complexes. Rapid Commun Mass Spectrom. 2012;26:2041–50.

    Article  Google Scholar 

  27. Hatsis P, Brombacher S, Corr J, Kovarik P, Volmer DA. Quantitative analysis of small pharmaceutical drugs using a high repetition rate laser matrix-assisted laser/desorption ionization source. Rapid Commun Mass Spectrom. 2003;17:2303–9.

    Article  CAS  Google Scholar 

  28. Popović I, Nešić M, Vranješ M, Šaponjić Z, Petković M. TiO2 nanocrystals-assisted laser desorption and ionization time-of-flight mass spectrometric analysis of steroid hormones, amino acids and saccharides. Validation and comparison of methods. RSC Adv. 2015;6:1027–36.

    Article  Google Scholar 

  29. Radoičić M, Janković I, Despotović V, Šojić D, Savić T, Šaponjić Z, et al. The role of surface defect sites of titania nanoparticles in the photocatalysis: aging and modification. Appl Catal B Environ. 2013;138-139:122–7.

    Article  Google Scholar 

  30. Thompson RC. Oxidation of peroxotitanium(IV) by chlorine and cerium(IV) in acidic perchlorate solution. Inorg Chem. 1984;23:1794–8.

    Article  CAS  Google Scholar 

  31. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania nanotubes prepared by chemical processing. Adv Mater. 1999;11:1307–11.

    Article  CAS  Google Scholar 

  32. Vranješ M, Šaponjić Z, Živković LJ, Despotović V, Sojić D, Abramović B, et al. Elongated titania nanostructures as efficient photocatalysts for degradation of selected herbicides. Appl Catal B Environ. 2014;160-161:589–96.

    Article  Google Scholar 

  33. Vranješ M, Kuljanin-Jakovljević J, Radetić T, Stoiljković M, Mitrić M, Šaponjić Z, et al. Structure and luminescence properties of Eu3+ doped TiO2 nanocrystals and prolate nanospheroids synthesized by the hydrothermal processing. Ceram Int. 2012;38:5629–36.

    Article  Google Scholar 

  34. Duncan MW, Roder H, Hunsucker SW. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct Genomic Proteomic. 2008;7:355–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Serbian Ministry of Education, Science and Technological Development, Grant Nos. 172011 and 172056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iva A. Popović.

Ethics declarations

There is no conflict of interests connected with the data presented in this manuscript, this research does not involve human participants and/or animals, all co-authors give their consent for this article to be submitted and no data, text or theories by others are resented as if they were the author’s own.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popović, I.A., Nešić, M., Vranješ, M. et al. SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates. Anal Bioanal Chem 408, 7481–7490 (2016). https://doi.org/10.1007/s00216-016-9846-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9846-8

Keywords

Navigation