Skip to main content
Log in

Highly sensitive detection of M.SssI DNA methyltransferase activity using a personal glucose meter

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2018

This article has been updated

Abstract

A simple method for highly sensitive and selective detection of M.SssI CpG methyltransferase (M.SssI MTase) activity is developed, leveraging on the portability and ease of use of a personal glucose meter (PGM). Briefly, DNA-invertase conjugates are hybridized with their complementary DNA strands pre-immobilized on magnetic beads. The 5′-CCGG-3′ sequence present in the DNA duplexes serves as the recognition site for both Hpa II restriction enzyme and M.SssI MTase (5′-CG-3′). Hpa II restriction enzyme specifically cleaves at unmethylated 5′-CCGG-3′ sequence, and the invertase that remains on the methylated DNA catalyzes the hydrolysis of sucrose to glucose and fructose. It is found that the amount of glucose is proportional to the M.SssI MTase methylation activity in the range of 0.5 to 80 U/mL with a detection limit of 0.37 U/mL. Due to the specific recognition sequence present in the DNA strands, this method also shows high selectivity for M.SssI MTase. In addition, inhibition studies with 5′-azacytidine demonstrate the capability of inhibition screening using this method.

Deteciton of M.SssI DNA methyltransferase activity by a personal glucose meter

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 27 July 2018

    We should like to call your attention to the fact that Si Ying Png’s name was misspelled in the original publication: it should be Si Ying Png.

References

  1. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–13.

    Article  CAS  PubMed  Google Scholar 

  2. Gros C, Fahy J, Halby L, Dufau I, Erdmann A, Gregoire JM, et al. DNA methylation inhibitors in cancer: recent and future approaches. Biochimie. 2012;94:2280–96.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng X, Roberts RJ. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res. 2001;29:3784–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JPJ, Davidson NE, et al. Inactivation of the CDKN2/pl6/MTSl gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55:4525–30.

    CAS  PubMed  Google Scholar 

  5. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21:5400–13.

    Article  CAS  PubMed  Google Scholar 

  6. Auclair G, Weber M. Mechanisms of DNA methylation and demethylation in mammals. Biochimie. 2012;94:2202–11.

    Article  CAS  PubMed  Google Scholar 

  7. Levenson VV, Melnikov AA. DNA methylation as clinically useful biomarkers—light at the end of the tunnel. Pharmaceuticals. 2012;5:94–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1997;74:560–4.

    Article  Google Scholar 

  9. Fedoreyeva LI, Vanyushin BF. N 6-Adenine DNA-methyltransferase in wheat seedlings. FEBS Lett. 2002;514:305–8.

    Article  CAS  PubMed  Google Scholar 

  10. Fraga MF, Uriol E, Diego LB, Berdasco M, Esteller M, Canal MJ, et al. High-performance capillary electrophoretic method for the quantification of 5-methyl 2′-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis. 2002;23:1677–81.

    Article  CAS  PubMed  Google Scholar 

  11. Ge C, Fang Z, Chen J, Liu J, Lu X, Zeng L. A simple colorimetric detection of DNA methylation. Analyst. 2012;137:2032–5.

    Article  CAS  PubMed  Google Scholar 

  12. Bi S, Zhao T, Luo B, Zhu JJ. Hybridization chain reaction-based branched rolling circle amplification for chemiluminescence detection of DNA methylation. Chem Commun. 2013;49:6906–8.

    Article  CAS  Google Scholar 

  13. Worm J, Aggerholm A, Guldberg P. In-tube DNA, methylation profiling by fluorescence melting curve analysis. ClinChem. 2001;47:1183–9.

    CAS  Google Scholar 

  14. Cedar H, Solage A, Glaser G, Razin A. Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI. Nucleic Acids Res. 1979;6:2125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng HM, Yang XJ, Yeo SPX. GaoZQ. Highly sensitive electrochemical methyltransferase activity assay. Anal Chem. 2014;86:2117–23.

    Article  CAS  PubMed  Google Scholar 

  16. Ferri S, Kojima K, Sode K. Review of glucose oxidases and glucose dehydrogenases: a bird's eye view of glucose sensing enzymes. J Diabetes Sci Technol. 2011;5:1068–76.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xiang Y, Lu Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem. 2011;3:697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu J, Jiang B, Xie J, Xiang Y, Yuan R, Chai Y. Sensitive point-of-care monitoring of HIV related DNA sequences with a personal glucometer. Chem Commun. 2012;48:10733–5.

    Article  CAS  Google Scholar 

  19. Ma X, Chen Z, Zhou J, Weng W, Zheng O, Lin Z, et al. Aptamer-based portable biosensor for platelet-derived growth factor-BB (PDGF-BB) with personal glucose meter readout. BiosensBioelectron. 2014;55:412–6.

    Article  CAS  Google Scholar 

  20. Xiang Y, Lu Y. Portable and quantitative detection of protein biomarkers and small molecular toxins using antibodies and ubiquitous personal glucose meters. Anal Chem. 2012;84:4174–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiang Y, Lu Y. An invasive DNA approach toward a general method for portable quantification of metal ions using a personal glucose meter. Chem Commun. 2013;49:585–7.

    Article  CAS  Google Scholar 

  22. Yan L, Zhu Z, Zou Y, Huang Y, Liu D, Jia S, et al. Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J Am Chem Soc. 2013;135:3748–51.

    Article  CAS  PubMed  Google Scholar 

  23. Kupper D, Reuter M, Meisel A, Kruger DH. Reliable detection of DNA CpG methylation profiles by the isoschizomers MspI/HpaII using oligo-nucleotide stimulators. BioTechniques. 1997;23:843–7.

    Article  CAS  PubMed  Google Scholar 

  24. Gao C, Li H, Liu Y, Wei W, Zhang Y, Liu S. Label-free fluorescence detection of DNA methylation and methyltransferase activity based on restriction endonuclease Hpa II and exonuclease III. Analyst. 2014;139:6387–92.

    Article  CAS  PubMed  Google Scholar 

  25. Xing XW, Tang F, Wu J, Chu JM, Feng YQ, Zhou X, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling. Anal Chem. 2014;86:11269–74.

    Article  CAS  PubMed  Google Scholar 

  26. Yang Z, Wang F, Wang M, Yin H, Ai S. A novel signal-on strategy for M. SssI methyltransfease activity analysis and inhibitor screening based on photoelectrochemical immunosensor. Biosens Bioelectron. 2015;66:109–14.

    Article  CAS  PubMed  Google Scholar 

  27. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 2014;26:577–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Christman JM. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21:5483–95.

    Article  CAS  PubMed  Google Scholar 

  29. Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;2008:8–13.

    Article  CAS  Google Scholar 

  30. Kiziltepe T, Hideshima T, Catley L, Raje N, Yasui H, Shiraishi N, et al. 5-Azacytidine, a DNA methyltransferase inhibitor, induces ATR-mediated DNA double-strand break responses, apoptosis, and synergistic cytotoxicity with doxorubicin and bortezomib against multiple myeloma cells. Mol Cancer Ther. 2007;6:1718–27.

    Article  CAS  PubMed  Google Scholar 

  31. Keiko S, Yutaka K. Targeting cancer epigenetics: linking basic biology to clinical medicine. Adv Drug Del Rev. 2015;95:56–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Education for the financial support (R-143-000-588-112). H.D. is grateful for her scholarship from the Ministry of Education, Republic of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Peng, S.Y. & Gao, Z. Highly sensitive detection of M.SssI DNA methyltransferase activity using a personal glucose meter. Anal Bioanal Chem 408, 5867–5872 (2016). https://doi.org/10.1007/s00216-016-9701-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9701-y

Keywords

Navigation