Skip to main content
Log in

Inhibition-based first-generation electrochemical biosensors: theoretical aspects and application to 2,4-dichlorophenoxy acetic acid detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, several theoretical aspects involved in the first-generation inhibition-based electrochemical biosensor measurements have been discussed. In particular, we have developed a theoretical-methodological approach for the characterization of the kinetic interaction between alkaline phosphatase (AlP) and 2,4-dichlorophenoxy acetic acid (2,4-D) as representative inhibitor studied by means of cyclic voltammetry and amperometry. Based on these findings, a biosensor for the fast, simple, and inexpensive determination of 2,4-D has been developed. The enzyme has been immobilized on screen-printed electrodes (SPEs). To optimize the biosensor performances, several carbon-based SPEs, namely graphite (G), graphene (GP), and multiwalled carbon nanotubes (MWCNTs), have been evaluated. AlP was immobilized on the electrode surface by means of polyvinyl alcohol with styryl-pyridinium groups (PVA-SbQ) as cross-linking agent. In the presence of ascorbate 2-phosphate (A2P) as substrate, the herbicide has been determined, thanks to its inhibition activity towards the enzyme catalyzing the oxidation of A2P to ascorbic acid (AA). Under optimum experimental conditions, the best performance in terms of catalytic efficiency has been demonstrated by MWCNTs SPE-based biosensor. The inhibition biosensor shows a linearity range towards 2,4-D within 2.1–110 ppb, a LOD of 1 ppb, and acceptable repeatability and stability. This analysis method was applied to fortified lake water samples with recoveries above 90 %. The low cost of this device and its good analytical performances suggest its application for the screening and monitoring of 2,4-D in real matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Veldestra H. Plant hormones: synthetic auxin. Compr Biochem. 2014; 127–150.

  2. Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms and perspectives. Toxicol Appl Pharmacol. 2013;268:157–77.

    Article  CAS  Google Scholar 

  3. Garabrant DH, Philbert MA. Review of 2,4-docholorophenoxyacetic acid (2,4-D) epidemiology and toxicology. Crit Rev Toxicol. 2002;32:233–57.

    Article  CAS  Google Scholar 

  4. Wu JM, Ee KH, Lee HK. Automated dynamic liquid-liquid-liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters. J Chromatogr A. 2005;1082:121–7.

    Article  CAS  Google Scholar 

  5. Zhu LY, Lee HK. Field-amplified sample injection combined with water removal by electroosmotic flow pump in acidic buffer for analysis of phenoxy acid herbicides by capillary electrophoresis. Anal Chem. 2001;73:3065–72.

    Article  CAS  Google Scholar 

  6. Shin HS. Determination of phenoxy acid pesticides in frog and fish tissues by gas chromatography-mass spectrometry. Chromatographia. 2006;63:579–83.

    Article  CAS  Google Scholar 

  7. Eggins B, editor. Biosensors: an introduction. Weinheim: Wiley-Teubner; 1996.

    Google Scholar 

  8. Cass AEG, editor. Biosensors: a practical approach. Oxford: Oxford University Press; 1990.

    Google Scholar 

  9. Kim GY, Shim J, Kang MS, Moon SH. Preparation of a highly sensitive enzyme electrode using gold nanoparticles for measurement of pesticides at the ppt level. J Environ Monit. 2008;10:632–7.

    Article  CAS  Google Scholar 

  10. Deng AP, Yang H. A multichannel electrochemical detector coupled with an ELISA microtiter plate for the immunoassay of 2,4-dichlorophenoxyacetic acid. Sens Actuators B Chem. 2007;124:202–8.

    Article  CAS  Google Scholar 

  11. Navratilova I, Skladal P. The immunosensors for measurement of 2,4-dichlorophenoxyacetic acid based on electrochemical impedance spectroscopy. Bioelectrochemistry. 2004;62:11–8.

    Article  CAS  Google Scholar 

  12. Bauer CG, Erementko AV, Ehrentreich-Forster E, Bier FF, Makower A, Halsall HB, et al. Zeptomole-detection biosensor for alkaline phosphatase in an electrochemical immunoassay for 2,4-dichlorophenoxyacetic acid. Anal Chem. 1996;68:2453–8.

    Article  CAS  Google Scholar 

  13. Medyantseva EP, Vertlib MG, Kutyreva MP, Khaldeeva EI, Budnikov GK, Eremin SA. The specific immunochemical detection of 2,4dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid pesticides by amperometric cholinesterase biosensors. Anal Chim Acta. 1997;347:71–8.

    Article  CAS  Google Scholar 

  14. Kalab T, Skladal P. A disposable amperometric immunosensor for 2,4-dichlorophenoxy acetic acid. Anal Chim Acta. 1995;304:361–8.

    Article  CAS  Google Scholar 

  15. Dzantiev BB, Zherdev AV, Yulaev MF, Sitdikov RA, Dmitrieva NM, Yu Moreva I. Electrochemical immunosensors for determination of the pesticides 2,4-dichlorophenoxyacetic and 2,4,5-tricholorophenoxyacetic acids. Biosens Bioelectron. 1996;11:179–85.

    Article  CAS  Google Scholar 

  16. Trau D, Theuerl T, Wilmer M, Meusel M, Spener F. Development of an amperometric flow injection immunoanalysis system for the determination of the herbicide 2,4-dichlorophenoxyacetic acid in water. Biosens Bioelectron. 1997;12:499–510.

    Article  CAS  Google Scholar 

  17. Dequaire M, Degrand C, Limoges B. An immunomagnetic electrochemical sensor based on a perfluorosulfonate-coated screen-printed electrode for the determination of 2,4-dichlorophenoxyacetic acid. Anal Chem. 1999;71:2571–7.

    Article  CAS  Google Scholar 

  18. Gobi KV, Kim SJ, Tanaka H, Shoyama Y, Miura N. Novel surface plasmon resonance (SPR) immunosensor based on monomolecular layer of physically-adsorbed ovalbumin conjugate for detection of 2,4-dichlorophenoxyacetic acid and atomic force microscopy study. Sens Actuators B Chem. 2007;123:583–93.

    Article  CAS  Google Scholar 

  19. Kim SJ, Gobi KV, Tanaka H, Shoyama Y, Miura N. A simple and versatile self-assembled monolayer based surface plasmon resonance immunosensor for highly sensitive detection of 2,4-D from natural water resources. Sens Actuators B Chem. 2008;130:281–9.

    Article  CAS  Google Scholar 

  20. Gobi KV, Tanaka H, Shoyama Y, Miura N. Highly sensitive regenerable immunosensor for label-free detection of 2,4-dichlorophenoxyacetic acid at ppb levels by using surface plasmon resonance imaging. Sens Actuators B Chem. 2005;111:562–71.

    Article  Google Scholar 

  21. Kim SJ, Gobi KV, Iwasaka H, Tanaka H, Miura N. Novel miniature SPR immunosensor equipped with all-in-one multichannel sensor chip for detecting low-molecular-weight analytes. Biosens Bioelectron. 2007;23:701–7.

    Article  CAS  Google Scholar 

  22. Mosiello L, Nencini L, Segre L, Spanò M. A fibre-optic immunosensor for 2,4-dichlorophenoxyacetic acid detection. Sens Actuators B Chem. 1997;39:353–9.

    Article  CAS  Google Scholar 

  23. Long F, Shi HC, He M, Zhu AN. Sensitive and rapid detection of 2,4-dichlorophenoxyacetic acid in water samples by using evanescent wave all-fiber immunosensor. Biosens Bioelectron. 2008;23:1361–6.

    Article  CAS  Google Scholar 

  24. Xie C, Gao S, Guo Q, Xu K. Electrochemical sensor for 2,4-dichlorophenoxy acetic acid using molecularly imprinted polypyrrole membrane as recognition element. Microchim Acta. 2010;169:145–52.

    Article  CAS  Google Scholar 

  25. Odaci D, Sezginturk MK, Timur S, Pazarlioglu N, Pilloton R, Dinckaya E, et al. Pseudomonas putida based amperometric biosensors for 2-4-D detection. Prep Biochem Biotechnol. 2009;39:11–9.

    Article  CAS  Google Scholar 

  26. Wong LS, Lee YH, Surif S. Whole cell biosensor using Anabaena torulosa with optical transduction for environmental toxicity evaluation. J Sens. 2013; 1–8.

  27. Kramer PM. Biosensors for measuring pesticides residues in the environment: past, present and future. J Assoc Off Anal Chem Int. 1996;79:1245–54.

    Google Scholar 

  28. Botrè C, Botrè F, Lorenti G, Mazzei F, Porcelli F, Scibona G, et al. Cholinesterase based bioreactor for determination of pesticides. Sens Actuators B. 1994;19:689–93.

    Article  Google Scholar 

  29. Mazzei F, Botrè F, Lorenti G, Porcelli F, Scibona G, Simonetti G, et al. Plant tissue electrode for the determination of atrazine. Anal Chim Acta. 1995;316:79–82.

    Article  CAS  Google Scholar 

  30. Mazzei F, Botrè F, Botrè C. Acid phosphatase/glucose oxidase-based biosensors for the determination of pesticides. Anal Chim Acta. 1996;336:67–75.

    Article  CAS  Google Scholar 

  31. Amine A, Mohammadi H, Bourais I, Palleschi G. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron. 2006;21:1405–23.

    Article  CAS  Google Scholar 

  32. Bachan Upadhyay LS, Verma N. Enzyme inhibition based biosensors: a review. Anal Lett. 2013;46:225–41.

    Article  Google Scholar 

  33. Sassolas A, Prieto-Simón B, Marty J-L. Biosensors for pesticide detection: new trends. Am J Anal Chem. 2012;3:210–32.

    Article  CAS  Google Scholar 

  34. Arduini F, Amine A, Moscone D, Palleschi G. Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta. 2010;170:193–214.

    Article  CAS  Google Scholar 

  35. Vidal JC, Bonel L, Castillo JR. A modulated tyrosinase enzyme-based biosensor for application to the detection of dichlorvos and atrazine pesticides. Electroanalysis. 2008;20:865–73.

    Article  CAS  Google Scholar 

  36. Garcia Sanchez F, Navas Diaz A, Ramos Peinado MC, Belledone C. Free ans sol-gel immobilized alkaline phosphatase-based biosensor for the determination of pesticides and inorganic compounds. Anal Chim Acta. 2003;484:45–51.

    Article  CAS  Google Scholar 

  37. Botrè C, Botrè F, Mazzei F, Podestà E. Inhibition-based biosensors for the detection of environmental contaminants: determination of 2,4-dichlorophenoxyacetic acid. Environ Toxicol Chem. 2000;19:2876–81.

    Google Scholar 

  38. Mazzei F, Botrè F, Montilla S, Pilloton R, Podestà E, Botrè C. Alkaline phosphatase inhibition based electrochemical sensors for the detection of pesticides. J Electroanal Chem. 2004;574:95–100.

    Article  CAS  Google Scholar 

  39. Shyuan LK, Heng LY, Ahmad M, Aziz SA, Ishak Z. Evaluation of pesticide and heavy metal toxicity using immobilized enzyme alkaline phosphatase with an electrochemical biosensor. Asian J Biochem. 2008;3:359–65.

    CAS  Google Scholar 

  40. Loh K-S, Lee YH, Musa A, Salmah AA, Zamri I. Use of Fe3O4 nanoparticles for enhancement of biosensor response to herbicide 2,4-dichlorophenoxyacetic acid. Sensors. 2008;8:5775–91.

    Article  CAS  Google Scholar 

  41. Carralero SV, Luz MM, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta. 2005;528(1–3):1–8.

    Article  Google Scholar 

  42. Di Fusco M, Favero G, Mazzei F. Polyazetidine-coated microelectrodes: electrochemical and diffusion characterization of different redox substrates. J Phys Chem B. 2011;115:972–9.

    Article  Google Scholar 

  43. Copeland RA. Evaluation of enzyme inhibitors in drug discovery. Wiley 2005 IBSN:0471686964

  44. Dequaire M, Limoges B, Moiroux J, Savéant J-M. Mediated electrochemistry of horseradish peroxidase. Catalysis and inhibition. J Am Chem Soc. 2002;124(2):240–53.

    Article  CAS  Google Scholar 

  45. Bourdillon C, Demaille C, Moiroux J, Savéant J-M. New insights into the enzymic catalysis of the oxidation of glucose by native and recombinant glucose oxidase mediated by electrochemically generated one-electron redox cosubstrates. J Am Chem Soc. 1993;115(1):1–10.

    Article  Google Scholar 

  46. Savéant J-M, editor. Elements of molecular and biomolecular electrochemistry: an electrochemical approach to electron transfer chemistry. New York: Wiley; 2006.

    Google Scholar 

  47. Kano K, Ikeda T. Fundamentals and practices of mediated bioelectrocatalysis. Anal Sci. 2000;16:1013–21.

    Article  CAS  Google Scholar 

  48. Kano K, Ohgaru T, Nakase H, Ikeda T. Electrochemical evaluation of redox enzyme reaction kinetics based on mediated bioelectrocatalysis in solution. Chem Lett. 1996;6:439–40.

    Article  Google Scholar 

  49. Bartlett PN, Toh C-S, editors. Biosensors: a practical approach. Oxford: Oxford University Press; 2004.

    Google Scholar 

  50. Baronas R, Ivanauskas F, Kulys J. Mathematical modeling of biosensors: an introduction for chemists and mathematicians. Netherlands: Springer; 2010.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Mazzei.

Ethics declarations

This statement is to certify that all authors have neither conflict of interest to declare, nor research involving Human Participants and/or Animals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bollella, P., Fusco, G., Tortolini, C. et al. Inhibition-based first-generation electrochemical biosensors: theoretical aspects and application to 2,4-dichlorophenoxy acetic acid detection. Anal Bioanal Chem 408, 3203–3211 (2016). https://doi.org/10.1007/s00216-016-9389-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9389-z

Keywords

Navigation