Skip to main content
Log in

Gas chromatography-mass spectrometry and Raman imaging measurement of squalene content and distribution in human hair

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A sensitive and specific gas chromatography-mass spectrometry (GC-MS) method was developed and validated for the measurement of the squalene content from root to tip, in both Chinese black virgin and bleached hair. Deuterated squalene was used as the internal standard. For quantification, selective ion monitoring (SIM) at m/z 410.0 and 347.0 were monitored for squalene and deuterated squalene, respectively. Different methods for the extraction of squalene from ex vivo human hair were compared including organic solvent extraction and acid/alkali hydrolysis. The best extraction efficiency was obtained by using a mixed solvent consisting of chloroform:methanol = 2:1 (v:v). The linear range of squalene ran from 1.0 to 50.0 μg mL−1. The limit of detection (LOD) was 0.10 μg mL−1 (corresponding to 0.005 mg g−1 in human hair), which enabled quantification of squalene in human hair at very low level. The recovery of squalene was 96.4 ± 1.46 % (n = 3). Using the above-mentioned mixed solvent extraction, squalene content in human hair was successfully quantified from root to tip. Meanwhile, a Raman imaging method was developed to visualize the squalene distribution in Chinese white virgin hair from cuticle to medulla.

Raman image of squalene distribution in Chinese white virgin hair (microtomed hair cross section).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spanova M, Daum D. Eur J Lipid Sci Technol. 2011;113:1299–320.

    Article  CAS  Google Scholar 

  2. Kohno Y. Biochim Biophys Acta. 1995;1256:52–6.

    Article  Google Scholar 

  3. Huang Z, Lin Y, Fang J. Molecules. 2009;14:540–54.

    Article  CAS  Google Scholar 

  4. Jahaniaval F, Kakuda Y, Marcone MF. J Am Oil Chem Soc. 2000;77:847–52.

    Article  CAS  Google Scholar 

  5. Smith KR, Thiboutot DM. J Lipid Res. 2008;49:271–81.

    Article  CAS  Google Scholar 

  6. Framil MM, Pineiro AM, Barrera PB, Lopez P, Tabernero MJ, Bermejo AM. Anal Chem. 2007;79:8564–70.

    Article  Google Scholar 

  7. Gottardo R, Bortolotti F, Paoli GD, Pascali JP, Miksik I, Tagliaro F. J Chromatogr A. 2007;1159:185–9.

    Article  CAS  Google Scholar 

  8. Pragst F, Balikova MA. Clin Chim Acta. 2006;370:17–49.

    Article  CAS  Google Scholar 

  9. Jou CJG, Chen YS, Wang HP, Lin KS, Tai HS. Bioresour Technol. 1999;70:111–3.

    Article  CAS  Google Scholar 

  10. Baumgartner MR, Guglielmello R, Fanger M, Kraemer T. Forensic Sci Int. 2012;215:56–9.

    Article  CAS  Google Scholar 

  11. Sakamoto O, Fujinuma Y, Ozawa T. J Am Oil Chem Soc. 1977;54:143A.

    Google Scholar 

  12. Shaw DA. Int J Cosmet Sci. 1979;1:291.

    Article  CAS  Google Scholar 

  13. Koch J, Aitzetmuller K, Bittorf G, Waibel J. J Soc Scsmet Chem. 1982;33:317.

    CAS  Google Scholar 

  14. Wertz PW, Downing DT. Comp Biochem Physiol. 1989;92B:759.

  15. Bong SH, Zahn H. Int J Cosmet Sci. 1989;11:167.

    Article  Google Scholar 

  16. Kuroda H, Yoshihama K, Sasagawa M, Suzuki M. J Soc Cosmet Chem. 1933;26:254.

    Article  Google Scholar 

  17. Yamamoto T. Jpn J Dermatol. 1994;104:543.

    CAS  Google Scholar 

  18. Hoting E, Zimmermann M. J Soc Cosmet Chem. 1996;47:201.

    CAS  Google Scholar 

  19. Auwarter V, Kiebling B, Pragst F. Forensic Sci Int. 2004;145:149–59.

    Article  CAS  Google Scholar 

  20. Masukawa Y, Tsujimura H, Imokawa G. J Chromatogr B. 2005;823:131–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights and informed consent

The authors state that written informed consent of all individual participants who provided hair samples was obtained.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Chen, G., Ji, C. et al. Gas chromatography-mass spectrometry and Raman imaging measurement of squalene content and distribution in human hair. Anal Bioanal Chem 408, 2357–2362 (2016). https://doi.org/10.1007/s00216-016-9335-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9335-0

Keywords

Navigation