Skip to main content
Log in

Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil), water, and landfills. The exact structure of HS macromolecules has not yet been determined because of their complexity and heterogeneity. Various descriptions of HS are used depending on specific environments of origin and research interests. In order to improve the understanding of the structure of HS extracted from landfill leachate (LHS) and commercial HS from leonardite (HHS), this study sought to compare the composition and characterization of the structure of LHS and HHS using elemental composition, chromatographic (high-performance liquid chromatography (HPLC)), and spectroscopic techniques (UV–vis, FTIR, NMR, and MALDI-TOF). The results showed that LHS molecules have a lower molecular weight and less aromatic structure than HHS molecules. The characteristics of functional groups of both LHS and HHS, however, were basically similar, but there was some differences in absorbance intensity. There were also less aliphatic and acidic functional groups and more aromatic and polyphenolic compounds in the humic acid (HA) fraction than in the fulvic acid (FA) and other molecules (OM) fractions of both origins. The differences between LHS and HHS might be due to the time course of humification. Combining the results obtained from these analytical techniques cold improve our understanding of the structure of HS of different origins and thus enhance their potential use.

Chemical and structural and characterization of landfill leachate and leonardite humic fractions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FA:

Fulvic acids

HA:

Humic acids

HFA:

Leonardite fulvic acids

HHA:

Leonardite humic acids

HHS:

Leonardite HS

HOM:

Leonardite other molecules

HS:

Humic substances

LFA:

Leachate fulvic acids

LHA:

Leachate humic acids

LHS:

Leachate HS

LOM:

Leachate other molecules

References

  1. Vilar V, Rocha E, Mota F, Fonseca A, Saraiva I, Boaventura R. Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Res. 2011;45(8):2647–58. doi:10.1016/j.watres.2011.02.019.

    Article  CAS  Google Scholar 

  2. Sang N, Han M, Li GK, Huang M. Landfill leachate affects metabolic responses of Zea mays L. seedlings. Waste Manage. 2010;30:856–62. doi:10.1016/j.wasman.2010.01.023.

    Article  CAS  Google Scholar 

  3. Zhao R, Novak JT, Goldsmith CD. Evaluation of on-site biological treatment for landfill leachates and its impact: a size distribution study. Water Res. 2012;46:3837–48. doi:10.1016/j.watres.2012.04.022.

    Article  CAS  Google Scholar 

  4. Renou S, Givaudan JG, Poulaina S, Dirassouyan F, Moulin P. Landfill leachate treatment: review and opportunity. J Hazard Mater. 2008;150:468–93. doi:10.1016/j.jhazmat.2007.09.077.

    Article  CAS  Google Scholar 

  5. Hou D, He J, Lü C, Wang W, Zhang F. Spatial distributions of humic substances and evaluation of sediment organic index on Lake Dalinouer, China. J Geophys Res. 2014;2014:1–13. doi:10.1155/2014/502597.

    Google Scholar 

  6. Xiaoli C, Shimaoka T, Qiang G, Youcai Z. Characterization of humic and fulvic acids extracted from landfill by elemental composition, 13C CP/MAS NMR and TMAH-Py-GC/MS. Waste Manage. 2008;28:896–903. doi:10.1016/j.wasman.2007.02.004.

    Article  Google Scholar 

  7. Canellas LP, Zandonodi DB, Busato JG, Baldotto MA, Simoes ML, Martin-Neto L, et al. Bioactivity and chemical characteristics of humic acids from tropical soils sequence. Soil Sci. 2008;173(9):24–637. doi:10.1097/SS.0b013e3181847ebf.

    Article  Google Scholar 

  8. Badis A, Ferradji FZ, Boucherit A, Fodil D, Boutoumi H. Characterization and biodegradation of soil humic acids and preliminary identification of decolorizing actinomycetes at Mitidja plain soils (Algeria). Afri J Microbiol Res. 2009;3(13):997–1007.

    CAS  Google Scholar 

  9. Piccolo A. The supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil science. Adv Agron. 2002;75:57–134. doi:10.1016/S0065-2113(02)75003-7.

    Article  CAS  Google Scholar 

  10. Kang KH, Shin HS, Park H. Characterization of humic substancs present in landfill leachates with different ages and implications. Water Res. 2002;36(16):4023–32. doi:10.1016/S0043-1354(02)00114-8.

    Article  CAS  Google Scholar 

  11. Abbt-Braun G, Lankes U, Frimmel FH. Structural characterization of aquatic humic substances—the need for a multiple method approach. Aquat Sci. 2004;66:151–70. doi:10.1007/s00027-004-0711-z.

    Article  CAS  Google Scholar 

  12. Chung TL, Chen JS, Chiu CY, Tian G. 13C-NMR spectroscopy studies of humic substances in subtropical perhumid montane forest soil. J For Res. 2011;17:1–10. doi:10.1007/s10310-011-0319-9.

    Google Scholar 

  13. Nasir S, Sarfaraz TB, Verheyen TV, Chaffee AL. Structural elucidation of humic acids extracted from Pakistani lignite using spectroscopic and thermal degradative techniques. Fuel Process Technol. 2011;92(5):983–91. doi:10.1016/j.fuproc.2010.12.020.

    Article  CAS  Google Scholar 

  14. Fernández-Gómez MJ, Nogales R, Plante A, Plaza C, Fernández JM. Application of a set of complementary techniques to understand how varying the proportion of two wastes affects humic acids produced by vermicomposting. Waste Manage. 2015;35:81–8. doi:10.1016/j.wasman.2014.09.022.

    Article  Google Scholar 

  15. Sierra MD, Giovanela M, Parlanti E, Soriano-Sierra EJ. 3D-Fluorescence spectroscopic analysis of HPLC fractionated estuarine fulvic and humic acids. J Braz Chem Soc. 2006;17(1):113–24. doi:10.1590/S0103-50532006000100017.

    Article  CAS  Google Scholar 

  16. Tahiri A, Destain J, Thonart P, Druart P. In vitro model to study the biological properties of humic fractions from landfill leachate and leonardite during root elongation of Alnus glutinosa L. Gaertn and Betula pendula Roth. Plant Cell Tiss Organ Cult. 2015;122(3):739–49. doi:10.1007/s11240-015-0807-2.

    Article  CAS  Google Scholar 

  17. Thonart P, Steyer E, Drion R, Hiligsmann S. La gestion biologique d’une décharge. Tribune de l’Eau. 1998;590(591):3–12.

    Google Scholar 

  18. Sang N, Li GK, Xin XY. Municipal landfill leachate induces cytogenetic damage in root tips of Hordeum vulgare. Ecotoxicol Environ Saf. 2006;63:469–73. doi:10.1016/j.ecoenv.2005.02.009.

    Article  CAS  Google Scholar 

  19. Kjeldsen P, Barlaz MA, Rooker AP, Baum A, Ledin A, Christensen TH. Present and long-term composition of MSW landfill leachate. A review. Crit Rev Environ Sci Technol. 2002;32(4):297–336. doi:10.1080/10643380290813462.

    Article  CAS  Google Scholar 

  20. Tahiri A, Destain J, Thonart P, Druart P. Valorization and properties of landfill leachates humic substances. J Mater Environ Sci. 2014;5(S2):2495–8.

    Google Scholar 

  21. Berthe C. Etude de la Matière Organique contenue dans des lixiviats issus de différentes filières de traitement des déchets ménagers et assimilés. France: Thèse de doctorat, Université de Limoges; 2006.

    Google Scholar 

  22. François V. Détermination d’indicateurs d’accélération et de stabilisation de déchets ménagers enfouis. Etude de la recirculation de lixiviats sur colonnes de déchets. Thèse de doctorat, Université de Limoges. 2004.

  23. Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv Agron. 2014;124:37–89. doi:10.1016/B978-0-12-800138-7.00002-4.

    Article  CAS  Google Scholar 

  24. Ryan D, Zhu B. Humic substances: high performance liquid chromatography. Ref Mod Chem Mol Sci Chem Eng. 2013. doi:10.1016/B978-0-12-409547-2.04781-8.

    Google Scholar 

  25. Egeberg PK, Alberts JJ. Determination of hydrophobicity of NOM by RP-HPLC, and the effect of pH and ionic strength. Water Res. 2002;36:4997–5004. doi:10.1016/S0043-1354(02)00228-2.

    Article  CAS  Google Scholar 

  26. Her N, Amy G, Foss D, Cho J. Variations in molecular weight estimation by HP-size exclusion chromatography with UVA versus online DOC detection. Environ Sci Technol. 2002;36:3393–9. doi:10.1021/es015649y.

    Article  CAS  Google Scholar 

  27. Wu FC, Evans RD, Dillon PJ. High-performance liquid chromatographic fractionation and characterization of fulvic acid. Anal Chim Acta. 2002;464:47–55. doi:10.1016/S0003-2670(02)00476-2.

    Article  CAS  Google Scholar 

  28. Wu FC, Evans RD, Dillon PJ, Cai YR. Rapid quantification of humic and fulvic acids by HPLC in natural waters. Appl Geochem. 2007;22:1598–605. doi:10.1016/j.apgeochem.2007.03.043.

    Article  CAS  Google Scholar 

  29. Hutta M, Gora R, Halko R, Chalanyova M. Some theoretical and practical aspects in the separation of humic substances by combined liquid chromatography methods. J Chromatog A. 2011;1218:8946–57. doi:10.1016/j.chroma.2011.06.107.

    Article  CAS  Google Scholar 

  30. Chen J, Gu B, Le Boeuf EJ, Pan H, Dai S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere. 2002;48:59–68. doi:10.1016/S0045-6535(02)00041-3.

    Article  CAS  Google Scholar 

  31. Pansu M, Gautheyrou J. Handbook of soil analysis: mineralogical, organic and inorganic methods. Berlin Heidelberg: Springer; 2006. p. 399–451.

    Book  Google Scholar 

  32. Chin YP, Aiken G, O’Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol. 1994;28(11):1853–8. doi:10.1021/es00060a015.

    Article  CAS  Google Scholar 

  33. Uyguner CS, Bekbolet M. Evaluation of humic acid photocatalytic degradation by UV–Vis and fluorescence spectroscopy. Catal Today. 2005;101(3):267–74. doi:10.1016/j.cattod.2005.03.011.

    Article  CAS  Google Scholar 

  34. Tahiri A, Destain J, Druart P, Thonart P. Propriétés physico-chimiques et biologiques des substances humiques en relation avec le développement végétal. Biotechnol Agron Soc Environ. 2014;18(3):336–45.

    Google Scholar 

  35. Zhang L, Li A, Lu Y, Yan L, Zhong S, Deng C. Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration. Waste Manage. 2009;29:1035–40. doi:10.1016/j.wasman.2008.08.020.

    Article  CAS  Google Scholar 

  36. Atkins P, De Paula J. Physical chemistry. 9th ed. New York: Oxford University Press; 2009.

    Google Scholar 

  37. Baigorri R, Fuentes M, González-Gaitano G, García-Mina JM, Almendros G, González-Vila FJ. Complementary multianalytical approach to study the distinctive structural features of the main humic fractions in solution: gray humic acid, brown humic acid, and fulvic acid. J Agric Food Chem. 2009;57(8):3266–72. doi:10.1021/jf8035353.

    Article  CAS  Google Scholar 

  38. Baglieri A, Vindrola D, Gennari M, Negre M. Chemical and spectroscopic characterization of insoluble and soluble humic acid fractions at different pH values. Chem Bioll Technol Agr. 2014;1:9. doi:10.1186/s40538-014-0009-x.

    Article  Google Scholar 

  39. Russell, Stokes AR, Macdonald H, Muscolo A, Nardi S. Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant Soil. 2006;283:175–85. doi:10.1007/s11104-006-0011-6.

    Article  CAS  Google Scholar 

  40. Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S. High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol. 2010;36:662–9. doi:10.1007/s10886-010-9790-6.

    Article  CAS  Google Scholar 

  41. Trubetskoj O, Hatcher PG, Trubetskaya OE. 1H-NMR and 13C-NMR spectroscopy of chernozem soil humic acid fractionated by combined size-exclusion chromatography and electrophoresis. Chem Ecol. 2010;26(4):315–25. doi:10.1080/02757541003785825.

    Article  CAS  Google Scholar 

  42. Ertani A, Francioso O, Tugnoli V, Righi V, Nardi S. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. J Agric Food Chem. 2011;59:11940–8. doi:10.1021/jf202473e.

    Article  CAS  Google Scholar 

  43. Adani F, Genevini P, Tambone F, Montoneri E. Compost effect on soil humic acid: a NMR study. Chemosphere. 2006;65:1414–8. doi:10.1016/j.chemosphere.2006.03.070.

    Article  CAS  Google Scholar 

  44. Fan TWM. Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progr Nucl Magn Reson Spectrosc. 1996;28:161–219. doi:10.1016/0079-6565(95)01017-3.

    Article  CAS  Google Scholar 

  45. Muscolo A, Sidari M, Attinà E, Francioso O, Tugnoli V, Nardi S. Biological activity of humic substances is related to their chemical structure. Soil Sci Soc Am J. 2007;71:75–85. doi:10.2136/sssaj2006.0055.

    Article  CAS  Google Scholar 

  46. Kim HT. Humic matter in soil and the environment. Principles and controversies. CRC Press 294p. 2014.

  47. Hillenkamp F, Peter-Katalinic J. MALDI MS: a practical guide to instrumentation, methods and applications. Hardcover. Wiley-Blackwell, 480p. 2007.

  48. Lyubomirova V, Djingova R. Mass spectrometric techniques for characterisation of platinum–humic substance complexes in soil and street dust samples. Chem Spec Bioavailab. 2013;25(4):223–34. doi:10.3184/095422913X13844520283032.

    Article  CAS  Google Scholar 

  49. Mugo SM, Bottaro CS. Characterization of humic substances by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:2375–82. doi:10.1002/rcm.1635.

    Article  CAS  Google Scholar 

  50. Gajdǒsová D, Pokorná L, Láska K, Prosěk P, Havel J. Are there humic acids in Antarctica? In: Davies G, Ghabbour EA, editors. Humic substances structures, models and functions. Cambridge: Royal Society of Chemistry; 2001. p. 121–31.

    Chapter  Google Scholar 

  51. Peña-Méndez EM, Gajdošová D, Novotná K, Prošek P, Havel J. Mass spectrometry of humic substances of different origin including those from Antarctica. A comparative study. Talanta. 2005;67:880–90. doi:10.1016/j.talanta.2005.03.032.

    Article  Google Scholar 

  52. Gajdǒsová D, Novotná K, Prosěkb P, Havela J. Separation and characterization of humic acids from Antarctica by capillary electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Inclusion complexes of humic acids with cyclodextrins. J Chromato A. 2003;1014:117–27. doi:10.1016/S0021-9673(03)01040-9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the TRADECORP Company for supplying its “Humifirst” formulation and the Van Gansewinkel Groep (Cour-au-Bois landfill) for providing the leachate needed to conduct our study. We also thank Maesen Ph. (GxABT-ULg) for the chemical analysis; De Pauw E. and Smargiasso N. (GIGA-Ulg) for the MALDI-TOF analysis; and Salvé A., Chemotti C., and Byttebier V. for their help in the chemical analysis and their technical assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani Tahiri.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahiri, A., Richel, A., Destain, J. et al. Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions. Anal Bioanal Chem 408, 1917–1928 (2016). https://doi.org/10.1007/s00216-016-9305-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9305-6

Keywords

Navigation