Skip to main content
Log in

Metabolic profiling of human plasma and urine in chronic kidney disease by hydrophilic interaction liquid chromatography coupled with time-of-flight mass spectrometry: a pilot study

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A typical characteristic of chronic kidney disease (CKD) is the progressive loss in renal function over a period of months or years with the concomitant accumulation of uremic retention solutes in the body. Known biomarkers for the kidney deterioration, such as serum creatinine or urinary albumin, do not allow effective early detection of CKD, which is essential towards disease management. In this work, a hydrophilic interaction liquid chromatography time-of-flight mass spectrometric (HILIC-TOF MS) platform was optimized allowing the search for novel uremic retention solutes and/or biomarkers of CKD. The HILIC-ESI-MS approach was used for the comparison of urine and plasma samples from CKD patients at stage 3 (n = 20), at stage 5 not yet receiving dialysis (n = 20) and from healthy controls (n = 20). Quality control samples were used to control and ensure the validity of the metabolomics approach. Subsequently the data were treated with the XCMS software for multivariate statistical analysis. In this way, differentiation could be achieved between the measured metabolite profile of the CKD patients versus the healthy controls. The approach allowed the elucidation of a number of metabolites that showed a significant up- and downregulation throughout the different stages of CKD. These compounds are cinnamoylglycine, glycoursodeoxycholic acid, 2-hydroxyethane sulfonate, and pregnenolone sulfate of which the identity was unambiguously confirmed via the use of authentic standards. The latter three are newly identified uremic retention solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stenvinkel P. Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease. J Intern Med. 2010;268:456–67.

    Article  CAS  Google Scholar 

  2. Vanholder R, De Smet R. Pathophysiologic effects of uremic retention solutes. J Am Soc Nephrol. 1999;10:1815–23.

    CAS  Google Scholar 

  3. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008;19:863–70.

    Article  Google Scholar 

  4. Neirynck N, Vanholder R, Schepers E, Eloot S, Pletinck A, Glorieux G. An update on uremic toxins. Int Urol Nephrol. 2013;45:139–50.

    Article  CAS  Google Scholar 

  5. Vanholder R, De Smet R, Glorieux G, Argilés A, Baurmeister U, Brunet P, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–43.

    Article  CAS  Google Scholar 

  6. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23:1258–70.

    Article  CAS  Google Scholar 

  7. Vassalotti JA, Stevens LA, Levey AS. Testing for chronic kidney disease: a position statement from the National Kidney Foundation. Am J Kidney Dis. 2007;50:169–80.

    Article  CAS  Google Scholar 

  8. Nickolas TL, Barasch J, Devarajan P. Biomarkers in acute and chronic kidney disease. Curr Opin Nephrol Hypertens. 2008;17:127–32.

    Article  CAS  Google Scholar 

  9. Wu I, Parikh CR. Screening for kidney diseases: older measures versus novel biomarkers. Clin J Am Soc Nephrol. 2008;3:1895–901.

    Article  CAS  Google Scholar 

  10. Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE. Biomarkers in chronic kidney disease: a review. Kidney Int. 2011;80:806–21.

    Article  CAS  Google Scholar 

  11. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med. 2006;354:2473–83.

    Article  CAS  Google Scholar 

  12. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1–266.

  13. Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13:263–9.

    Article  CAS  Google Scholar 

  14. Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4:551–61.

    Article  CAS  Google Scholar 

  15. Qi S, Ouyang X, Wang L, Peng W, Wen J, Dai Y. A pilot metabolic profiling study in serum of patients with chronic kidney disease based on 1H-NMR-spectroscopy. Clin Transl Sci. 2012;5:379–85.

    Article  CAS  Google Scholar 

  16. Sui W, Li L, Che W, Guimai Z, Chen J, Li W, et al. A proton nuclear magnetic resonance-based metabonomics study of metabolic profiling in immunoglobulin a nephropathy. Clin. 2012;67:363–73.

    Article  Google Scholar 

  17. Mutsaers HA, Engelke UF, Wilmer MJ, Wetzels JF, Wevers RA, van den Heuvel LP, et al. Optimized metabolomic approach to identify uremic solutes in plasma of stage 3–4 chronic kidney disease patients. PLoS One. 2013;8:e71199.

    Article  CAS  Google Scholar 

  18. Tao X, Liu Y, Wang Y, Qiu Y, Lin J, Zhao A, et al. GC-MS with ethyl chloroformate derivatization for comprehensive analysis of metabolites in serum and its application to human uremia. Anal Bioanal Chem. 2008;391:2881–9.

    Article  CAS  Google Scholar 

  19. Grabowska-Polanowska B, Faber J, Skowron M, Miarka P, Pietrzycka A, Sliwka I, et al. Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. J Chromatogr A. 2013;1301:179–89.

    Article  CAS  Google Scholar 

  20. Pagonas N, Vautz W, Seifert L, Slodzinski R, Jankowski J, Zidek W, et al. Volatile organic compounds in uremia. PLoS One. 2012;7:e46258.

    Article  CAS  Google Scholar 

  21. Rhee EP, Souza A, Farrell L, Pollak MR, Lewis GD, Steele DJR, et al. Metabolite profiling identifies markers of uremia. J Am Soc Nephrol. 2010;21:1041–51.

    Article  CAS  Google Scholar 

  22. Jia L, Chen J, Yin P, Lu X, Xu G. Serum metabonomics study of chronic renal failure by ultra performance liquid chromatography coupled with Q-TOF mass spectrometry. Metab. 2008;4:183–9.

    CAS  Google Scholar 

  23. Aronov PA, Luo FJ, Plummer NS, Quan Z, Holmes S, Hostetter TH, et al. Colonic contribution to uremic solutes. J Am Soc Nephrol. 2011;22:1769–76.

    Article  CAS  Google Scholar 

  24. Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, et al. Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010;33:944–52.

    Article  Google Scholar 

  25. Hayashi K, Sasamura H, Hishiki T, Suematsu M, Ikeda S, Soga T, et al. Use of serum and urine metabolome analysis for the detection of metabolic changes in patients with stage 1–2 chronic kidney disease. Nephro-Urol Mon. 2011;3:164–71.

    Google Scholar 

  26. Hirayama A, Nakashima E, Sugimoto M, Akiyama S, Sato W, Maruyama S, et al. Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal Bioanal Chem. 2012;404:3101–9.

    Article  CAS  Google Scholar 

  27. Posada-Ayala M, Zubiri I, Martin-Lorenzo M, Sanz-Maroto A, Molero D, Gonzalez-Calero L, et al. (2014) Identification of a urine metabolomic signature in patients with advanced-stage chronic kidney disease. Kidney Int 85(1):103–11.

  28. Shah VO, Townsend RR, Feldman HI, Pappan KL, Kensicki E, Vander Jagt DL. Plasma metabolomic profiles in different stages of CKD. Clin J Am Soc Nephrol. 2013;8:363–70.

    Article  CAS  Google Scholar 

  29. Boelaert J, t’Kindt R, Schepers E, Jorge L, Glorieux G, Neirynck N, et al. State-of-the-art non-targeted metabolomics in the study of chronic kidney disease. Metab. 2013;10:425–42.

  30. Chen J, Wang W, Lv S, Yin P, Zhao X, Lu X, et al. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal Chim Acta. 2009;650:3–9.

    Article  CAS  Google Scholar 

  31. Lin L, Huang Z, Gao Y, Yan X, Xing J, Hang W. LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery. J Proteome Res. 2010;10:1396–405.

    Article  Google Scholar 

  32. Spagou K, Wilson ID, Masson P, Theodoridis G, Raikos N, Coen M, et al. HILIC-UPLC-MS for exploratory urinary metabolic profiling in toxicological studies. Anal Chem. 2011;83:382–90.

    Article  CAS  Google Scholar 

  33. Chen J, Zhou L, Zhang X, Lu X, Cao R, Xu C, et al. Urinary hydrophilic and hydrophobic metabolic profiling based on liquid chromatography-mass spectrometry methods: differential metabolite discovery specific to ovarian cancer. Electrophor. 2012;33:3361–9.

    Article  CAS  Google Scholar 

  34. Ivanisevic J, Zhu ZJ, Plate L, Tautenhahn R, Chen S, O’Brien PJ, et al. Toward ’omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal Chem. 2013;85:6876–84.

    Article  CAS  Google Scholar 

  35. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87.

    Article  CAS  Google Scholar 

  36. Warrack BM, Hnatyshyn S, Ott KH, Reily MD, Sanders M, Zhang H, et al. Normalization strategies for metabonomic analysis of urine samples. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:547–52.

    Article  CAS  Google Scholar 

  37. Tautenhahn R, Patti GJ, Kalisiak E, Miyamoto T, Schmidt M, Lo FY, et al. metaXCMS: second-order analysis of untargeted metabolomics data. Anal Chem. 2011;83:696–700.

    Article  CAS  Google Scholar 

  38. Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem. 2012;84:283–9.

    Article  CAS  Google Scholar 

  39. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabol. 2007;3:211–21.

    Article  CAS  Google Scholar 

  40. Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009;50:2340–57.

    Article  CAS  Google Scholar 

  41. Fernandes A, Vaz AR, Falcao AS, Silva RF, Brito MA, Brites D. Glycoursodeoxycholic acid and interleukin-10 modulate the reactivity of rat cortical astrocytes to unconjugated bilirubin. J Neuropathol Exp Neurol. 2007;66:789–98.

    Article  CAS  Google Scholar 

  42. Vaz AR, Delgado-Esteban M, Brito MA, Bolanos JP, Brites D, Almeida A. Bilirubin selectively inhibits cytochrome c oxidase activity and induces apoptosis in immature cortical neurons: assessment of the protective effects of glycoursodeoxycholic acid. J Neurochem. 2010;112:56–65.

    Article  CAS  Google Scholar 

  43. Brito MA, Lima S, Fernandes A, Falcao AS, Silva RF, Butterfield DA, et al. Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotox. 2008;29:259–69.

    Article  CAS  Google Scholar 

  44. Fellman JH, Roth ES, Avedovech NA, McCarthy KD. The metabolism of taurine to isethionate. Arch Biochem Biophys. 1980;204:560–7.

    Article  CAS  Google Scholar 

  45. Snapper I, Yü TF, Chiang YT. Cinnamic acid metabolism in man. Exp Biol Med. 1940;44:30–4.

    Article  CAS  Google Scholar 

  46. Sirich TL, Aronov PA, Plummer NS, Hostetter TH, Meyer TW. Numerous protein-bound solutes are cleared by the kidney with high efficiency. Kidney Int. 2013;84:585–90.

    Article  CAS  Google Scholar 

  47. Harteneck C. Pregnenolone sulfate: from steroid metabolite to TRP channel ligand. Mol. 2013;18:12012–28.

    Article  CAS  Google Scholar 

  48. St-Pierre MV, Hagenbuch B, Ugele B, Meier PJ, Stallmach T. Characterization of an organic anion-transporting polypeptide (OATP-B) in human placenta. J Clin Endocrinol Metab. 2002;87:1856–63.

    Article  CAS  Google Scholar 

  49. Grube M, Kock K, Karner S, Reuther S, Ritter CA, Jedlitschky G, et al. Modification of OATP2B1-mediated transport by steroid hormones. Mol Pharmacol. 2006;70:1735–41.

    Article  CAS  Google Scholar 

  50. Geyer J, Doring B, Meerkamp K, Ugele B, Bakhiya N, Fernandes CF, et al. Cloning and functional characterization of human sodium-dependent organic anion transporter (SLC10A6). J Biol Chem. 2007;282:19728–41.

    Article  CAS  Google Scholar 

  51. Grosser G, Fietz D, Gunther S, Bakhaus K, Schweigmann H, Ugele B, et al. Cloning and functional characterization of the mouse sodium-dependent organic anion transporter Soat (Slc10a6). J Steroid Biochem Mol Biol. 2013;138:90–9.

    Article  CAS  Google Scholar 

  52. Fang F, Christian WV, Gorman SG, Cui M, Huang J, Tieu K, et al. Neurosteroid transport by the organic solute transporter OSTalpha-OSTbeta. J Neurochem. 2010;115:220–33.

    Article  CAS  Google Scholar 

  53. Majewska MD, Mienville JM, Vicini S. Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neurosci Lett. 1988;90:279–84.

    Article  CAS  Google Scholar 

  54. Majewska MD, Demirgoren S, London ED. Binding of pregnenolone sulfate to rat brain membranes suggests multiple sites of steroid action at the GABAA receptor. Eur J Pharmacol. 1990;189:307–15.

    Article  CAS  Google Scholar 

  55. Wu FS, Gibbs TT, Farb DH. Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol. 1991;40:333–6.

    CAS  Google Scholar 

  56. Wagner TF, Loch S, Lambert S, Straub I, Mannebach S, Mathar I, et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells. Nat Cell Biol. 2008;10:1421–30.

    Article  CAS  Google Scholar 

  57. Lambert S, Drews A, Rizun O, Wagner TF, Lis A, Mannebach S, et al. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J Biol Chem. 2011;286:12221–33.

    Article  CAS  Google Scholar 

  58. Kullak-Ublick GA, Fisch T, Oswald M, Hagenbuch B, Meier PJ, Beuers U, et al. Dehydroepiandrosterone sulfate (DHEAS): identification of a carrier protein in human liver and brain. FEBS Lett. 1998;424:173–6.

    Article  CAS  Google Scholar 

  59. Twede V, Tartaglia AL, Covey DF, Bamber BA. The neurosteroids dehydroepiandrosterone sulfate and pregnenolone sulfate inhibit the UNC-49 GABA receptor through a common set of residues. Mol Pharmacol. 2007;72:1322–9.

    Article  CAS  Google Scholar 

  60. Monnet FP, Mahé V, Robel P, Baulieu EE. Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci. 1995;92:3774–8.

    Article  CAS  Google Scholar 

  61. D’Hooge R, Van de Vijver G, Van Bogaert PP, Marescau B, Vanholder R, De Deyn PP. Involvement of voltage- and ligand-gated Ca2+ channels in the neuroexcitatory and synergistic effects of putative uremic neurotoxins. Kidney Int. 2003;63:1764–75.

    Article  Google Scholar 

  62. De Deyn PP, Macdonald RL. Guanidino compounds that are increased in cerebrospinal fluid and brain of uremic patients inhibit GABA and glycine responses on mouse neurons in cell culture. Ann Neurol. 1990;28:627–33.

    Article  Google Scholar 

  63. Rueth M, Lemke H-D, Preisinger C, Krieter D, Theelen W, Gajjala P, et al. Guanidinylations of albumin decreased binding capacity of hydrophobic metabolites. Acta Physiol. 2015;215:13–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jente Boelaert gratefully acknowledges the financial support of the Agency for Innovation by Science and Technology in Flanders (IWT). The Metabolomics Innovation Centre (TMIC, Canada) is acknowledged for providing metabolite standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Lynen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

The study protocol was approved by the Ethics Committee of Gent University Hospital, and informed consent was obtained prior to collection of the samples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boelaert, J., Lynen, F., Glorieux, G. et al. Metabolic profiling of human plasma and urine in chronic kidney disease by hydrophilic interaction liquid chromatography coupled with time-of-flight mass spectrometry: a pilot study. Anal Bioanal Chem 409, 2201–2211 (2017). https://doi.org/10.1007/s00216-016-0165-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0165-x

Keywords

Navigation