Skip to main content

Advertisement

Log in

Probing the kinetics of quantum dot-based proteolytic sensors

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

As an enzyme superfamily, proteases are rivaled only by kinases in terms of their abundance within the human genome. Two ratiometric quantum dot (QD) Förster resonance energy transfer-based sensors designed to monitor the activity of the proteolytic enzymes collagenase and elastase are investigated here. Given the unique material constraints of these sensing constructs, assays are realized utilizing excess enzyme and fixed substrate in progress curve format to yield enzyme specificity or k cat/K m ratios. The range of k cat/Km values derived is 0.5–1.1 mM−1 s−1 for the collagenase sensor and 3.7–4.2 mM−1 s−1 for the elastase sensor. Of greater interest is the observation that the elastase sensor can be well represented by the Michaelis-Menten model while the collagenase sensor cannot. The latter demonstrates increased specificity at higher peptide substrate/QD loading values and an apparent QD-caused reversible inhibition as the reaction progresses. Understanding the detailed kinetic mechanisms that underpin these types of sensors will be important especially for their further quantitative utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao M, Josephson L, Tang Y, Weissleder R (2003) Magnetic sensors for protease assays. Angew Chem Int Ed 42:1375–1378

    Article  CAS  Google Scholar 

  2. Hu J, Zhang G, Liu S (2012) Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 41:5933–5949

    Article  CAS  Google Scholar 

  3. Choi Y, Ho N-H, Tung C-H (2007) Sensing phosphatase activity by using gold nanoparticles. Angew Chem Int Ed 46:707–709

    Article  CAS  Google Scholar 

  4. Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252

    Article  CAS  Google Scholar 

  5. Diaz SA, Gillanders F, Jares-Erijman EA, Jovin TM (2015) Photoswitchable semiconductor nanocrystals with self-regulating photochromic Förster resonance energy transfer acceptors. Nat Commun 6:6036

    Article  CAS  Google Scholar 

  6. Algar WR, Kim H, Medintz IL, Hildebrandt N (2014) Emerging non-traditional Förster resonance energy transfer configurations with semiconductor quantum dots: investigations and applications. Coord Chem Rev 263–264:65–85

    Article  Google Scholar 

  7. Jennings TL, Becker-Catania SG, Triulzi RC, Tao G, Scott B, Sapsford KE, Spindel S, Oh E, Jain V, Delehanty JB, Prasuhn DE, Boeneman K, Algar WR, Medintz IL (2011) Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis. ACS Nano 5:5579–5593

    Article  CAS  Google Scholar 

  8. Medintz IL, Clapp AR, Brunel FM, Tiefenbrunn T, Uyeda HT, Chang EL, Deschamps JR, Dawson PE, Mattoussi H (2006) Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat Mater 5:581–589

    Article  CAS  Google Scholar 

  9. Shi L, De Paoli V, Rosenzweig N, Rosenzweig Z (2006) Synthesis and application of quantum dots FRET-based protease sensors. J Am Chem Soc 128:10378–10379

    Article  CAS  Google Scholar 

  10. Dennis AM, Sotto DC, Mei BC, Medintz IL, Mattoussi H, Bao G (2010) Surface ligand effects on metal-affinity coordination to quantum dots: Implications for nanoprobe self-assembly. Bioconjugate Chem 21:1160–1170

    Article  CAS  Google Scholar 

  11. Medintz IL, Pons T, Susumu K, Boeneman K, Dennis AM, Farrell D, Deschamps JR, Melinger JS, Bao G, Mattoussi H (2009) Resonance energy transfer between luminescent quantum dots and diverse fluorescent protein acceptors. J Phys Chem C 113:18552–18561

    Article  CAS  Google Scholar 

  12. Boeneman K, Mei BC, Dennis AM, Bao G, Deschamps JR, Mattoussi H, Medintz IL (2009) Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc 131:3828–3829

    Article  CAS  Google Scholar 

  13. Knudsen BR, Jepsen ML, Ho Y-P (2013) Quantum dot-based nanosensors for diagnosis via enzyme activity measurement. Expert Rev Mol Diagn 13:367–375

    Article  CAS  Google Scholar 

  14. Medintz IL, Hildebrandt N (eds) (2014) FRET—Förster resonance energy transfer: from theory to applications. Wiley

  15. Yao H, Zhang Y, Xiao F, Xia Z, Rao J (2007) Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angew Chem Int Ed 46:4346–4349

    Article  CAS  Google Scholar 

  16. Chen P, Selegard R, Aili D, Liedberg B (2013) Peptide functionalized gold nanoparticles for colorimetric detection of matrilysin (MMP-7) activity. Nanoscale 5:8973–8976

    Article  CAS  Google Scholar 

  17. Wu M, Algar WR (2015) Acceleration of proteolytic activity associated with selection of thiol ligand coatings on quantum dots. ACS Appl Mater Interfaces 7:2535–2545

    Article  CAS  Google Scholar 

  18. Gill R, Freeman R, Xu JP, Willner I, Winograd S, Shweky I, Banin U (2006) Probing biocatalytic transformations with CdSe-ZnS QDs. J Am Chem Soc 128:15376–15377

    Article  CAS  Google Scholar 

  19. Long Y, Zhang LF, Zhang Y, Zhang CY (2012) Single quantum dot based nanosensor for renin assay. Anal Chem 84:8846–8852

    Article  CAS  Google Scholar 

  20. Breger JC, Sapsford KE, Ganek J, Susumu K, Stewart MH, Medintz IL (2014) Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors. ACS Appl Mater Interfaces 6:11529–11535

    Article  CAS  Google Scholar 

  21. Nagy A, Gemmill KB, Delehanty JB, Medintz IL, Sapsford KE (2014) Peptide-functionalized quantum dot biosensors. IEEE J Sel Top Quant 20(3):1–12

    Article  Google Scholar 

  22. Sapsford KE, Granek J, Deschamps JR, Boeneman K, Blanco-Canosa JB, Dawson PE, Susumu K, Stewart MH, Medintz IL (2011) Monitoring botulinum neurotoxin A activity with peptide-functionalized quantum dot resonance energy transfer sensors. ACS Nano 5:2687–2699

    Article  CAS  Google Scholar 

  23. Algar WR, Blanco-Canosa JB, Manthe RL, Susumu K, Stewart MH, Dawson PE, Medintz IL (2013) Synthesizing and modifying peptides for chemoselective ligation and assembly into quantum dot-peptide bioconjugates. Methods Mol Biol 1025:47–73

    Article  CAS  Google Scholar 

  24. Prasuhn DE, Blanco-Canosa JB, Vora GJ, Delehanty JB, Susumu K, Mei BC, Dawson PE, Medintz IL (2010) Combining chemoselective ligation with polyhistidine-driven self-assembly for the modular display of biomolecules on quantum dots. ACS Nano 4:267–278

    Article  CAS  Google Scholar 

  25. Prasuhn DE, Feltz A, Blanco-Canosa JB, Susumu K, Stewart MH, Mei BC, Yakovlev AV, Loukov C, Mallet JM, Oheim M, Dawson PE, Medintz IL (2010) Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano 4:5487–5497

    Article  CAS  Google Scholar 

  26. Samanta A, Walper SA, Susumu K, Dwyer CL, Medintz IL (2015) An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots. Nanoscale 7:7603–7614

    Article  CAS  Google Scholar 

  27. Algar WR, Malanoski AP, Susumu K, Stewart MH, Hildebrandt N, Medintz IL (2012) Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay. Anal Chem 84:10136–10146

    Article  CAS  Google Scholar 

  28. Geißler D, Linden S, Liermann K, Wegner KD, Charbonnière LJ, Hildebrandt N (2014) Lanthanides and quantum dots as Förster resonance energy transfer agents for diagnostics and cellular imaging. Inorg Chem 53:1824–1838

    Article  Google Scholar 

  29. Petryayeva E, Algar WR (2013) Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms. Anal Chem 85:8817–8825

    Article  CAS  Google Scholar 

  30. Crivat G, Da Silva SM, Reyes DR, Locascio LE, Gaitan M, Rosenzweig N, Rosenzweig Z (2010) Quantum dot FRET-based probes in thin films grown in microfluidic channels. J Am Chem Soc 132:1460–1461

    Article  CAS  Google Scholar 

  31. Kim Y-P, Oh Y-H, Oh E, Ko S, Han M-K, Kim H-S (2008) Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Anal Chem 80:4634–4641

    Article  CAS  Google Scholar 

  32. Algar WR, Malonoski A, Deschamps JR, Blanco-Canosa JB, Susumu K, Stewart MH, Johnson BJ, Dawson PE, Medintz IL (2012) Proteolytic activity at quantum dot-conjugates: kinetic analysis reveals enhanced enzyme activity and localized interfacial "hopping". Nano Lett 12:3793–3802

    Article  CAS  Google Scholar 

  33. Johnson BJ, Algar WR, Malanoski AP, Ancona MG, Medintz IL (2014) Understanding enzymatic acceleration at nanoparticle interfaces: approaches and challenges. Nano Today 9:102–131

    Article  CAS  Google Scholar 

  34. Cornish-Bowden A (2012) Fundamentals of enzyme kinetics, 4th Edition. Wiley

  35. Palmier MO, Van Doren SR (2007) Rapid determination of enzyme kinetics from fluorescence: overcoming the inner filter effect. Anal Biochem 371:43–51

    Article  CAS  Google Scholar 

  36. Claussen JC, Malanoski A, Breger JC, Oh E, Walper SA, Susumu K, Goswami R, Deschamps JR, Medintz IL (2015) Probing the enzymatic activity of alkaline phosphatase within quantum dot bioconjugates. J Phys Chem C 119:2208–2221

    Article  CAS  Google Scholar 

  37. Petryayeva E, Algar WR (2015) Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. RSC Adv 5(28):22256–22282

    Article  CAS  Google Scholar 

  38. Galliera E, Tacchini L, Corsi Romanelli MM (2015) Matrix metalloproteinases as biomarkers of disease: updates and new insights. Clin Chem and Lab Med 53(3):349–355

    Article  CAS  Google Scholar 

  39. Hentz VR (2014) Collagenase injections for treatment of dupuytren disease. Hand Clin 30(1):25–32

    Article  Google Scholar 

  40. Susumu K, Oh E, Delehanty JB, Pinaud F, Gemmill KB, Walper S, Breger J, Schroeder MJ, Stewart MH, Jain V, Whitaker CM, Huston AL, Medintz IL (2014) A new family of pyridine-appended multidentate polymers as hydrophilic surface ligands for preparing stable biocompatible quantum dots. Chem Mater 26:5327–5344

    Article  CAS  Google Scholar 

  41. Oh E, Susumu K, Makinen A, Deschamps JR, Huston AL, Medintz IL (2013) Colloidal stability of gold nanoparticles coated with multithiol-poly(ethylene glycol) ligands: importance of structural constraints of the sulfur anchoring groups. J Phys Chem C 117:18947–18956

    Article  CAS  Google Scholar 

  42. Susumu K, Oh E, Delehanty JB, Blanco-Canosa JB, Johnson BJ, Jain V, Hervey WJ, Algar WR, Boeneman K, Dawson PE, Medintz IL (2011) Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. J Am Chem Soc 133:9480–9496

    Article  CAS  Google Scholar 

  43. Sapsford KE, Farrell D, Sun S, Rasooly A, Mattoussi H, Medintz IL (2009) Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot-peptide substrates. Sensor Actuat B-Chem 139:13–21

    Article  CAS  Google Scholar 

  44. Oh E, Fatemi FK, Currie M, Delehanty JB, Pons T, Fragola A, Leveque-Fort S, Goswami R, Susumu K, Huston AL, Medintz IL (2013) PEGylated luminescent gold nanoclusters: synthesis, characterization, bioconjugation, and application to one- and two-photon cellular imaging. Part Part Syst Charact 30:453–466

    Article  CAS  Google Scholar 

  45. Sapsford KE, Pons T, Medintz IL, Higashiya S, Brunel FM, Dawson PE, Mattoussi H (2007) Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots. J Phys Chem C 111:11528–11538

    Article  CAS  Google Scholar 

  46. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041

    Article  CAS  Google Scholar 

  47. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35(Web Server issue):W522–W525

    Article  Google Scholar 

  48. Duggleby RG (2001) Quantitative analysis of the time courses of enzyme-catalyzed reactions. Methods 24:168–174

    Article  CAS  Google Scholar 

  49. Eisenthal R, Danson MJ, Hough DW (2007) Catalytic efficiency and kcat/KM: a useful comparator? Trends Biotechnol 25:247–249

    Article  CAS  Google Scholar 

  50. Harper JW, Cook RR, Roberts CJ, McLaughlin BJ, Powers JC (1984) Active site mapping of the serine proteases human leukocyte elastase, cathepsin G, porcine pancreatic elastase, rat mast cell proteases I and II. Bovine chymotrypsin A alpha, and Staphylococcus aureus protease V-8 using tripeptide thiobenzyl ester substrates. Biochemistry 23:2995–3002

    Article  CAS  Google Scholar 

  51. Bond MD, Van Wart HE (1984) Characterization of the individual collagenases from Clostridium histolyticum. Biochemistry 23:3085–3091

    Article  CAS  Google Scholar 

  52. Extracellular Matrix (1996) The practical approach series. Oxford University Press

  53. Eckhard U, Schonauer E, Nuss D, Brandstetter H (2011) Structure of collagenase G reveals a chew-and-digest mechanism of bacterial collagenolysis. Nat Struct Mol Biol 18:1109–1114

    Article  CAS  Google Scholar 

  54. Zobel M, Neder RB, Kimber SAJ (2015) Universal solvent restructuring induced by colloidal nanoparticles. Science 347:292–294

    Article  CAS  Google Scholar 

  55. Laaksonen T, Ahonen P, Johans C, Kontturi K (2006) Stability and electrostatics of mercaptoundecanoic acid-capped gold nanoparticles with varying counterion size. ChemPhysChem 7:2143–2149

    Article  CAS  Google Scholar 

  56. Boyer PD (1971) The enzymes, vol III, 3rd edn. Academic, New York

    Google Scholar 

  57. Schomburg D (1991) Enzyme handbook 5: class 3: hydrolases. Springer, Berlin

    Google Scholar 

  58. Ghosh S, Ray M, Das MR, Chakrabarti A, Khan AH, Sarma DD, Acharya S (2014) Modulation of glyceraldehyde-3-phosphate dehydrogenase activity by surface functionalized quantum dots. Phys Chem Chem Phys 16:5276–5283

    Article  CAS  Google Scholar 

  59. Wegner KD, Morgner F, Oh E, Goswami R, Susumu K, Stewart M, Medintz IL, Hildebrandt N (2014) Three-dimensional solution-phase FRET analysis of nanomolar quantum dot bioconjugates with sub-nanometer resolution. Chem Mater 26:4299–4312

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SAD acknowledges an ASEE post-doctoral fellowship through NRL. The authors acknowledge the NRL Nanosciences Institute and DTRA JSTO MIPR # B112582M.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor L. Medintz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, S.A., Malonoski, A.P., Susumu, K. et al. Probing the kinetics of quantum dot-based proteolytic sensors. Anal Bioanal Chem 407, 7307–7318 (2015). https://doi.org/10.1007/s00216-015-8892-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8892-y

Keywords

Navigation