Skip to main content
Log in

Morphology and kinetic modeling of molecularly imprinted organosilanol polymer matrix for specific uptake of creatinine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Molecular imprinting is an emerging technique to create imprinted polymers that can be applied in affinity-based separation, in particular, biomimetic sensors. In this study, the matrix of siloxane bonds prepared from the polycondensation of hydrolyzed tetraethoxysilane (TEOS) was employed as the inorganic monomer for the formation of a creatinine (Cre)-based molecularly imprinted polymer (MIP). Doped aluminium ion (Al3+) was used as the functional cross-linker that generated Lewis acid sites in the confined silica matrix to interact with Cre via sharing of lone pair electrons. Surface morphologies and pore characteristics of the synthesized MIP were determined by field emission scanning electron microscopy (FESEM) and Brunauer-Emmet-Teller (BET) analyses, respectively. The imprinting efficiency of MIPs was then evaluated through the adsorption of Cre with regard to molar ratios of Al3+. A Cre adsorption capacity of up to 17.40 mg Cre g–1 MIP was obtained and adsorption selectivity of Cre to its analogues creatine (Cr) and N-hydroxysuccinimide (N-hyd) were found to be 3.90 ± 0.61 and 4.17 ± 3.09, respectively. Of all the studied MIP systems, chemisorption was predicted as the rate-limiting step in the binding of Cre. The pseudo-second-order chemical reaction kinetic provides the best correlation of the experimental data. Furthermore, the equilibrium adsorption capacity of MIP fit well with a Freundlich isotherm (R 2 = 0.98) in which the heterogeneous surface was defined.

Affinity binding of Cre to specific recognition sites based on shape factor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80(3):1107–1213

    CAS  Google Scholar 

  2. Killard AJ, Smyth MR (2000) Creatinine biosensors: principles and designs. Trends Biotechnol 18(10):433–437

    Article  CAS  Google Scholar 

  3. Soldatkin AP, Montoriol J, Sant W, Martelet C, Jaffrezic-Renault N (2002) Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilized in BSA membrane. Talanta 58(2):351–357

    Article  CAS  Google Scholar 

  4. Arndt T (2009) Urine-creatinine concentration as a marker of urine dilution: reflections using a cohort of 45,000 samples. Forensic Sci Int 186(1/3):48–51

    Article  CAS  Google Scholar 

  5. Mǎdǎraş MB, Buck RP (1996) Miniaturized biosensors employing electropolymerized permselective films and their use for creatinine assays in human serum. Anal Chem 68(21):3832–3839

    Article  Google Scholar 

  6. Tsai H-A, Syu M-J (2005) Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor. Analytica Chimica Acta 539(1–2):107–116

  7. Osaka T, Komaba S, Amano A, Fujino Y, Mori H (2000) Electrochemical molecular sieving of the polyion complex film for designing highly sensitive biosensor for creatinine. Sensors Actuators B Chem 65(1/3):58–63

    Article  CAS  Google Scholar 

  8. Weber JA, van Zanten AP (1991) Interferences in current methods for measurements of creatinine. Clin Chem 37(5):695–700

    CAS  Google Scholar 

  9. Börner U, Staehler F, Stinshoff K, Szasz G (1976) Evaluation of an enzymatic method for creatinine. Z Anal Chem 279(2):171–171

    Article  Google Scholar 

  10. Kandimalla V, Ju H (2004) Molecular imprinting: a dynamic technique for diverse applications in analytical chemistry. Anal Bioanal Chem 380(4):587–605

    Article  CAS  Google Scholar 

  11. Spégel P, Schweitz L, Nilsson S (2002) Molecularly imprinted polymers. Anal Bioanal Chem 372(1):37–38

    Article  Google Scholar 

  12. Haginaka J (2004) Molecularly imprinted polymers for solid-phase extraction. Anal Bioanal Chem 379(3):332–334

    Article  CAS  Google Scholar 

  13. Feng L, Pamidighantam B, Lauterbur P (2010) Microwave-assisted sol-gel synthesis for molecular imprinting. Anal Bioanal Chem 396(4):1607–1612

    Article  CAS  Google Scholar 

  14. Sharma P, Pietrzyk-Le A, D’Souza F, Kutner W (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402(10):3177–3204

    Article  CAS  Google Scholar 

  15. Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft. 27(3):2985–2993

  16. Dickert FL, Hayden O (1999) Imprinting with sensor development—on the way to synthetic antibodies. Fresenius J Anal Chem 364(6):506–511

    Article  CAS  Google Scholar 

  17. Al-Kindy S, Badía R, Suárez-Rodríguez JL, Díaz-García ME (2000) Molecularly imprinted polymers and optical sensing applications. Crit Rev Anal Chem 30(4):291–309

    Article  CAS  Google Scholar 

  18. Vasapollo G, Sole RD, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12(9):5908–5945

    Article  CAS  Google Scholar 

  19. Martin-Esteban A (2004) Molecular imprinting technology: a simple way of synthesizing biomimetic polymeric receptors. Anal Bioanal Chem 378(8):1875–1875

    Article  CAS  Google Scholar 

  20. Resmini M (2012) Molecularly imprinted polymers as biomimetic catalysts. Anal Bioanal Chem 402(10):3021–3026

    Article  CAS  Google Scholar 

  21. Dickert F (2007) Molecular imprinting. Anal Bioanal Chem 389(2):353–354

    Article  CAS  Google Scholar 

  22. Li T-J, Chen P-Y, Nien P-C, Lin C-Y, Vittal R, Ling T-R, Ho K-C (2012) Preparation of a novel molecularly imprinted polymer by the sol-gel process for sensing creatinine. Anal Chim Acta 711:83–90

    Article  CAS  Google Scholar 

  23. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  24. Lin J, Brown CW (1997) Sol-gel glass as a matrix for chemical and biochemical sensing. TrAC Trends Anal Chem 16(4):200–211

    Article  CAS  Google Scholar 

  25. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36(6):993–1017

    Article  CAS  Google Scholar 

  26. Mujahid A, Lieberzeit PA, Dickert FL (2010) Chemical sensors based on molecularly imprinted sol-gel materials. Materials 3(4):2196–2217

    Article  CAS  Google Scholar 

  27. Jerónimo PCA, Araújo AN, Conceição BSM, Montenegro M (2007) Optical sensors and biosensors based on sol-gel films. Talanta 72(1):13–27

    Article  Google Scholar 

  28. Graham AL, Carlson CA, Edmiston PL (2002) Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT. Anal Chem 74(2):458–467

    Article  CAS  Google Scholar 

  29. Maier N, Lindner W (2007) Chiral recognition applications of molecularly imprinted polymers: a critical review. Anal Bioanal Chem 389(2):377–397

    Article  CAS  Google Scholar 

  30. Tsai H-A, Syu M-J (2005) Synthesis of creatinine-imprinted poly(β-cyclodextrin) for the specific binding of creatinine. Biomaterials 26(15):2759–2766

  31. Chang YS, Ko TH, Hsu TJ, Syu MJ (2009) Synthesis of an imprinted hybrid organic-inorganic polymeric sol-gel matrix toward the specific binding and isotherm kinetics investigation of creatinine. Anal Chem 81(6):2098–2105

    Article  CAS  Google Scholar 

  32. Tsai H-A, Syu M-J (2011) Preparation of imprinted poly(tetraethoxysilanol) sol-gel for the specific uptake of creatinine. Chem Eng J 168(3):1369–1376

    Article  CAS  Google Scholar 

  33. Ling T-R, Syu YZ, Tasi Y-C, Chou T-C, Liu C-C (2005) Size-selective recognition of catecholamines by molecular imprinting on silica–alumina gel. Biosens Bioelectron 21(6):901–907

    Article  CAS  Google Scholar 

  34. Karak D, Lohar S, Sahana A, Guha S, Banerjee A, Das D (2012) An Al3+ induced green luminescent fluorescent probe for cell imaging and naked eye detection. Anal Methods 4(7):1906–1908

    Article  CAS  Google Scholar 

  35. Jeyanthi D, Iniya M, Krishnaveni K, Chellappa D (2013) A ratiometric fluorescent sensor for selective recognition of Al3+ ions based on a simple benzimidazole platform. RSC Adv 3(43):20984–20989

    Article  CAS  Google Scholar 

  36. Qiu C, Xing Y, Yang W, Zhou Z, Wang Y, Liu H, Xu W (2015) Surface molecular imprinting on hybrid SiO2-coated CdTe nanocrystals for selective optosensing of bisphenol A and its optimal design. Appl Surface Sci 345:405–417

    Article  CAS  Google Scholar 

  37. Guo W, Hu W, Pan J, Zhou H, Guan W, Wang X, Dai J, Xu L (2011) Selective adsorption and separation of BPA from aqueous solution using novel molecularly imprinted polymers based on kaolinite/Fe3O4 composites. Chemi Eng J 171(2):603–611

    Article  CAS  Google Scholar 

  38. Ren Y, Ma W, Ma J, Wen Q, Wang J, Zhao F (2012) Synthesis and properties of bisphenol A molecular imprinted particle for selective recognition of BPA from water. J Colloid Interface Sci 367(1):355–361

    Article  CAS  Google Scholar 

  39. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    Article  CAS  Google Scholar 

  40. Johnson RD, Arnold FH (1995) The temkin isotherm describes heterogeneous protein adsorption. Biochim Biophys Acta Prot Struct Mol Enzymol 1247(2):293–297

    Article  Google Scholar 

  41. Subrahmanyam S, Piletsky SA, Piletska EV, Chen B, Karim K, Turner APF (2001) ‘Bite-and-Switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine. Biosens Bioelectron 16(9/12):631–637

    Article  CAS  Google Scholar 

  42. Hsieh R-Y, Tsai H-A, Syu M-J (2006) Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials 27(9):2083–2089

    Article  CAS  Google Scholar 

  43. Miura C, Funaya N, Matsunaga H, Haginaka J (2013) Monodisperse, molecularly imprinted polymers for creatinine by modified precipitation polymerization and their applications to creatinine assays for human serum and urine. J Pharmaceut Biomed Anal 85:288–294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from The Institution of Higher Education FRGS Grant (6071251), ScienceFund (6013393), and Membrane Science and Technology Cluster. Q.Y. Ang is financially assisted by the Ministry of Higher Education (MOHE) and Universiti Malaysia Perlis (UniMAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siew Chun Low.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ang, Q.Y., Low, S.C. Morphology and kinetic modeling of molecularly imprinted organosilanol polymer matrix for specific uptake of creatinine. Anal Bioanal Chem 407, 6747–6758 (2015). https://doi.org/10.1007/s00216-015-8841-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8841-9

Keywords

Navigation