Skip to main content
Log in

Decreased level of phosphatidylcholine (16:0/20:4) in multiple myeloma cells compared to plasma cells: a single-cell MALDI–IMS approach

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lipid metabolic changes under diseased conditions, particularly in solid tumors, are attracting increased attention. However, in non-solid tumors, including most hematopoietic tumors, lipid analyses are scarce. Multiple myeloma (MM) is a plasma cell disorder arising from bone marrow, and the lipid status of MM cells has not been reported yet. In this study, we analyzed flow cytometry-sorted single MM cells and normal plasma cells (NPCs) using matrix-assisted laser desorption/ionization–imaging mass spectrometry (MALDI–IMS), a two-dimensional label-free mass spectrometry technique for biomolecular analysis, to obtain specific lipid information. We isolated 1.31–5.77 % of MM cells and 0.03–0.24 % of NPCs using fluorescence-activated cell sorting (FACS). Analysis of purified cells using MALDI–IMS at the single-cell level revealed that the peak intensity and ion signals of phosphatidylcholine [PC (16:0/20:4) + H]+ at m/z 782.5 were significantly decreased in MM cells compared to NPCs. By examining particular cell populations rather than cell mixtures, our method can become a suitable tool for the analysis of rare cell populations at the single-cell level and advance the understanding of MM progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ide Y, Waki M, Hayasaka T, Nishio T, Morita Y, Tanaka H, Sasaki T, Koizumi K, Matsunuma R, Hosokawa Y, Ogura H, Shiiya N, Setou M (2013) Human breast cancer tissues contain abundant phosphatidylcholine(36:1) with high stearoyl-CoA desaturase-1 expression. PLoS One 8(4), e61204

    Article  CAS  Google Scholar 

  2. Kurabe N, Hayasaka T, Ogawa M, Masaki N, Ide Y, Waki M, Nakamura T, Kurachi K, Kahyo T, Shinmura K, Midorikawa Y, Sugiyama Y, Setou M, Sugimura H (2013) Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT4. Cancer Sci 104(10):1295–1302

    Article  CAS  Google Scholar 

  3. Uchiyama Y, Hayasaka T, Masaki N, Watanabe Y, Masumoto K, Nagata T, Katou F, Setou M (2014) Imaging mass spectrometry distinguished the cancer and stromal regions of oral squamous cell carcinoma by visualizing phosphatidylcholine (16:0/16:1) and phosphatidylcholine (18:1/20:4). Anal Bioanal Chem 406(5):1307–1316

    Article  CAS  Google Scholar 

  4. Matsumoto J, Sugiura Y, Yuki D, Hayasaka T, Goto-Inoue N, Zaima N, Kunii Y, Wada A, Yang Q, Nishiura K, Akatsu H, Hori A, Hashizume Y, Yamamoto T, Ikemoto K, Setou M, Niwa S (2011) Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 400(7):1933–1943

    Article  CAS  Google Scholar 

  5. Goto-Inoue N, Hayasaka T, Zaima N, Setou M (2011) Imaging mass spectrometry for lipidomics. Biochim Biophys Acta 1811(11):961–969

    Article  CAS  Google Scholar 

  6. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833

    Article  CAS  Google Scholar 

  7. Kawai K, Fujita M, Nakao M (1974) Lipid components of two different regions of an intestinal epithelial cell membrane of mouse. Biochim Biophys Acta 369(2):222–233

    Article  CAS  Google Scholar 

  8. Wajs J, Sawicki W (2013) The morphology of myeloma cells changes with progression of the disease. Contemp Oncol (Pozn) 17(3):272–275

    Google Scholar 

  9. Rajkumar SV (2011) Treatment of multiple myeloma. Nat Rev Clin Oncol 8(8):479–491

    Article  CAS  Google Scholar 

  10. Bahlis NJ (2012) Darwinian evolution and tiding clones in multiple myeloma. Blood 120(5):927–928

    Article  CAS  Google Scholar 

  11. Vincenz L, Jager R, O’Dwyer M, Samali A (2013) Endoplasmic reticulum stress and the unfolded protein response: targeting the Achilles heel of multiple myeloma. Mol Cancer Ther 12(6):831–843

    Article  CAS  Google Scholar 

  12. Andre T, Najar M, Stamatopoulos B, Pieters K, Pradier O, Bron D, Meuleman N, Lagneaux L (2013) Immune impairments in multiple myeloma bone marrow mesenchymal stromal cells. Cancer Immunol Immunother 64(2):213–224

    Article  Google Scholar 

  13. Sherbenou DW, Behrens CR, Su Y, Wolf JL, Martin TG 3rd, Liu B (2014) The development of potential antibody-based therapies for myeloma. Blood Rev (in press)

  14. Tirado-Velez JM, Joumady I, Saez-Benito A, Cozar-Castellano I, Perdomo G (2012) Inhibition of fatty acid metabolism reduces human myeloma cells proliferation. PLoS One 7(9), e46484

    Article  CAS  Google Scholar 

  15. Gupta R, Bhaskar A, Kumar L, Sharma A, Jain P (2009) Flow cytometric immunophenotyping and minimal residual disease analysis in multiple myeloma. Am J Clin Pathol 132(5):728–732

    Article  Google Scholar 

  16. Rawstron AC, Owen RG, Davies FE, Johnson RJ, Jones RA, Richards SJ, Evans PA, Child JA, Smith GM, Jack AS, Morgan GJ (1997) Circulating plasma cells in multiple myeloma: characterization and correlation with disease stage. Br J Haematol 97(1):46–55

    Article  CAS  Google Scholar 

  17. Wintrobe MM, Greer JP (2009) Lymphocytes and lymphatic organs. In: Paraskevas F (ed) Wintrobe’s clinical hematology, 12th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 300–325

    Google Scholar 

  18. Pachmann K, Leibold W (1976) Insolubilization of protein antigens on polyacrylic plastic beads using poly-L-lysine. J Immunol Methods 12(1–2):81–89

    Article  CAS  Google Scholar 

  19. Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol 66(1):198–200

    Article  CAS  Google Scholar 

  20. Nagata Y, Ishizaki I, Waki M, Ide Y, Hossen MA, Ohnishi K, Sanada N, Setou M (2014) Glutaraldehyde fixation method for single-cell lipid analysis by time-of-flight secondary ion-mass spectrometry. Surf Interface Anal 46(S1):185–188

    Article  CAS  Google Scholar 

  21. Hayasaka T, Goto-Inoue N, Masaki N, Ikegami K, Setou M (2014) Application of 2,5-dihydroxyacetophenone with sublimation provides efficient ionization of lipid species by atmospheric pressure matrix-assisted laser desorption/ionization imaging mass spectrometry. Surf Interface Anal 46(12–13):1219–1222

    Article  CAS  Google Scholar 

  22. Grove KJ, Frappier SL, Caprioli RM (2011) Matrix pre-coated MALDI MS targets for small molecule imaging in tissues. J Am Soc Mass Spectrom 22(1):192–195

    Article  CAS  Google Scholar 

  23. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the human metabolome database. Nucleic Acids Res 35(Database issue):D521–526

  24. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0–The human metabolome database in 2013. Nucleic Acids Res 41(Database issue):D801–807

  25. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48(3):452–458

    Article  CAS  Google Scholar 

  26. Yang I, Kim KH, Lee JY, Moon MH (2014) On-line miniaturized asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry with selected reaction monitoring for quantitative analysis of phospholipids in plasma lipoproteins. J Chromatogr A 1324:224–230

    Article  CAS  Google Scholar 

  27. Schober Y, Guenther S, Spengler B, Rompp A (2012) Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem 84(15):6293–6297

    Article  CAS  Google Scholar 

  28. Waki M, Ide Y, Ishizaki I, Nagata Y, Masaki N, Sugiyama E, Kurabe N, Nicolaescu D, Yamazaki F, Hayasaka T, Ikegami K, Kondo T, Shibata K, Hiraide T, Taki Y, Ogura H, Shiiya N, Sanada N, Setou M (2014) Single-cell time-of-flight secondary ion mass spectrometry reveals that human breast cancer stem cells have significantly lower content of palmitoleic acid compared to their counterpart non-stem cancer cells. Biochimie 107 Pt A:73–77

  29. Nagata Y, Ishizaki I, Waki M, Ide Y, Hossen A, Ohnishi K, Miyayama T, Setou M (2015) Palmitic acid, verified by lipid profiling using secondary ion mass spectrometry, demonstrates anti-multiple myeloma activity. Leuk Res (in press)

  30. Fuchs B, Schiller J, Cross MA (2007) Apoptosis-associated changes in the glycerophospholipid composition of hematopoietic progenitor cells monitored by 31P NMR spectroscopy and MALDI-TOF mass spectrometry. Chem Phys Lipids 150(2):229–238

    Article  CAS  Google Scholar 

  31. Roy MC, Nakanishi H, Takahashi K, Nakanishi S, Kajihara S, Hayasaka T, Setou M, Ogawa K, Taguchi R, Naito T (2011) Salamander retina phospholipids and their localization by MALDI imaging mass spectrometry at cellular size resolution. J Lipid Res 52(3):463–470

    Article  CAS  Google Scholar 

  32. Guo S, Wang Y, Zhou D, Li Z (2014) Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci Rep 4:5959

    CAS  Google Scholar 

  33. Moon YA, Shah NA, Mohapatra S, Warrington JA, Horton JD (2001) Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 276(48):45358–45366

    Article  CAS  Google Scholar 

  34. Matsuzaka T, Shimano H, Yahagi N, Yoshikawa T, Amemiya-Kudo M, Hasty AH, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Osuga J, Takahashi A, Yato S, Sone H, Ishibashi S, Yamada N (2002) Cloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs. J Lipid Res 43(6):911–920

    CAS  Google Scholar 

  35. Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, Inoue N, Ishikawa M, Okada S, Ishigaki N, Iwasaki H, Iwasaki Y, Karasawa T, Kumadaki S, Matsui T, Sekiya M, Ohashi K, Hasty AH, Nakagawa Y, Takahashi A, Suzuki H, Yatoh S, Sone H, Toyoshima H, Osuga J, Yamada N (2007) Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med 13(10):1193–1202

    Article  CAS  Google Scholar 

  36. Muir K, Hazim A, He Y, Peyressatre M, Kim DY, Song X, Beretta L (2013) Proteomic and lipidomic signatures of lipid metabolism in NASH-associated hepatocellular carcinoma. Cancer Res 73(15):4722–4731

    Article  CAS  Google Scholar 

  37. Doria ML, Ribeiro AS, Wang J, Cotrim CZ, Domingues P, Williams C, Domingues MR, Helguero LA (2014) Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival. FASEB J Off Publ Fed Am Soc Exp Biol 28(10):4247–4264

    CAS  Google Scholar 

  38. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6

    Article  CAS  Google Scholar 

  39. Sadowski MC, Pouwer RH, Gunter JH, Lubik AA, Quinn RJ, Nelson CC (2014) The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget 5(19):9362–9381

    Google Scholar 

  40. Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, Avances C, Allory Y, de la Taille A, Culine S, Blancou H, Cristol JP, Michel F, Sardet C, Fajas L (2010) Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther 9(6):1740–1754

    Article  CAS  Google Scholar 

  41. von Roemeling CA, Marlow LA, Wei JJ, Cooper SJ, Caulfield TR, Wu K, Tan WW, Tun HW, Copland JA (2013) Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res 19(9):2368–2380

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Japan Society for the Promotion of Science (Grant Number 25293044), the Ministry of Education, Culture, Sports, Science and Technology (Grant Number 25116712), and the Ministry of Health, Labor, and Welfare (Grant Number H23-Iryoukiki-Ippan-001). We appreciate the cooperation of all staff in our laboratory and in the Department of Hematology at Hamamatsu University Hospital. We proudly remember the kind support of Mr. Shibata at the Center of Facilities for Common Use in the Hamamatsu University School of Medicine.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsutoshi Setou.

Additional information

Published in the topical collection New Applications of Mass Spectrometry in Biomedicine with guest editors Fumio Nomura, Mitsutoshi Setou, and Toshimitsu Niwa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossen, M.A., Nagata, Y., Waki, M. et al. Decreased level of phosphatidylcholine (16:0/20:4) in multiple myeloma cells compared to plasma cells: a single-cell MALDI–IMS approach. Anal Bioanal Chem 407, 5273–5280 (2015). https://doi.org/10.1007/s00216-015-8741-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8741-z

Keywords

Navigation