Skip to main content
Log in

Single gold nanorods as optical probes for spectral imaging

  • Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we explain in detail the wavelength dependence of the elastic scattering pattern of individual, optically isolated gold nanorods by using confocal microscopy in combination with higher order laser modes, i.e., radially/azimuthally polarized laser modes. We demonstrate that the spectral dependence of the scattering pattern is mostly caused by the relative strength of the gold nanorods’ plasmonic modes at different wavelengths. Since the gold nanorods’ plasmonic modes are determined by the particles’ geometrical parameter, e.g., size and aspect ratio, as well as the refractive index of the surrounding medium, we show that the spectral dependence of the scattering pattern is a simple, not invasive way to determine, e.g., the gold nanorod aspect ratio or physical variation of the local environment. Thus, a further development of spectral imaging of gold nanorods can lead to the employment of this technique in biomedical assays involving also living samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  CAS  Google Scholar 

  2. Mitamura K, Imae T (2009) Functionalization of gold nanorods toward their applications. Plasmonics 4(1):23–30

    Article  CAS  Google Scholar 

  3. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  Google Scholar 

  4. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  Google Scholar 

  5. Zuloaga J, Prodan E, Nordlander P (2010) Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS Nano 4(9):5269–5276

    Article  CAS  Google Scholar 

  6. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103(40):8410–8426

    Article  CAS  Google Scholar 

  7. Hu X, Gao X (2011) Multilayer coating of gold nanorods for combined stability and biocompatibility. Phys Chem Chem Phys 13(21):10028–10035

    Article  CAS  Google Scholar 

  8. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    Article  CAS  Google Scholar 

  9. Huff TB, Hansen MN, Zhao Y, Cheng J-X, Wei A (2007) Controlling the cellular uptake of gold nanorods. Langmuir 23(4):1596–1599

    Article  CAS  Google Scholar 

  10. Wu X (2011) Au nanorods can be used for long-term cell imaging? Appl Phys Lett 98(21):213704

    Article  Google Scholar 

  11. Failla AV, Qian H, Qian H, Hartschuh A, Meixner AJ (2006) Orientational imaging of subwavelength Au particles with higher order laser modes. Nano Lett 6(7):1374–1378

    Article  CAS  Google Scholar 

  12. Wackenhut F, Failla AV, Züchner T, Steiner M, Meixner AJ (2012) Three-dimensional photoluminescence mapping and emission anisotropy of single gold nanorods. Appl Phys Lett 100(26):263102–263104

    Article  Google Scholar 

  13. Ahijado-Guzmán R, Prasad J, Rosman C, Henkel A, Tome L, Schneider D, Rivas G, Sönnichsen C (2014) Plasmonic nanosensors for simultaneous quantification of multiple protein–protein binding affinities. Nano Lett 14(10):5528–5532

    Article  Google Scholar 

  14. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  CAS  Google Scholar 

  15. Wackenhut F, Failla AV, Meixner AJ (2013) Multicolor microscopy and spectroscopy reveals the physics of the one-photon luminescence in gold nanorods. J Phys Chem C 117(34):17870–17877

    Article  CAS  Google Scholar 

  16. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248

    Article  CAS  Google Scholar 

  17. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366

    Article  CAS  Google Scholar 

  18. Züchner T, Failla AV, Hartschuh A, Meixner AJ (2008) A novel approach to detect and characterize the scattering patterns of single Au nanoparticles using confocal microscopy. J Microsc 229(2):337–343

    Article  Google Scholar 

  19. Züchner T, Failla AV, Meixner AJ (2011) Light microscopy with doughnut modes: a concept to detect, characterize, and manipulate individual nanoobjects. Angew Chem Int Ed 50(23):5274–5293

    Article  Google Scholar 

  20. Youngworth K, Brown T (2000) Focusing of high numerical aperture cylindrical-vector beams. Opt Express 7(2):77–87

    Article  CAS  Google Scholar 

  21. Wackenhut F, Failla AV, Meixner AJ (2013) Sensing dielectric media on the nanoscale with freely oriented gold nanorods. Phys Chem Chem Phys 15(15):5407–5414

    Article  CAS  Google Scholar 

  22. Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley

  23. Chen H, Ming T, Zhang S, Jin Z, Yang B, Wang J (2011) Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods. ACS Nano 5(6):4865–4877

    Article  CAS  Google Scholar 

  24. Failla AV, Jäger S, Züchner T, Steiner M, Meixner AJ (2007) Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy. Opt Express 15(14):8532–8542

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “BW Netz Funktionelle Nanostrukturen” and partly by DFG SPP 1391 ultrafast nanooptics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Virgilio Failla or Alfred J. Meixner.

Additional information

Published in the topical collection Direct Optical Detection with guest editors Guenter Gauglitz and Jiri Homola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wackenhut, F., Failla, A.V. & Meixner, A.J. Single gold nanorods as optical probes for spectral imaging. Anal Bioanal Chem 407, 4029–4034 (2015). https://doi.org/10.1007/s00216-015-8642-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8642-1

Keywords

Navigation