Skip to main content
Log in

Monitoring metabolites from Schizophyllum commune interacting with Hypholoma fasciculare combining LESA–HR mass spectrometry and Raman microscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microbial competition for territory and resources is inevitable in habitats with overlap between niches of different species or strains. In fungi, competition is brought about by antagonistic mycelial interactions which alter mycelial morphology, metabolic processes, secondary metabolite release, and extracellular enzyme patterns. Until now, we were not able study in vivo chemical interactions of different colonies growing on the same plate. In this report, we developed a fast and least invasive approach to identify, quantify, and visualize co culture-induced metabolites and their location of release within Schizophyllum commune. The pigments indigo, indirubin, and isatin were used as examples to show secondary metabolite production in the interaction zone with Hypholoma fasciculare. Using a combinatory approach of Raman spectroscopy imaging, liquid extraction surface analysis (LESA), and high-resolution mass spectrometry, we identified, quantified, and visualized the presence of indigo and indirubin in the interaction zone. This approach allows the investigation of metabolite patterns between wood degrading species in competition to gain insight in community interactions, but could also be applied to other microorganisms. This method advances analysis of living, still developing colonies and are in part not destructive as Raman spectroscopy imaging is implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moree WJ, Phelan VV, Wu C-H, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC (2012) Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci U S A 109(34):13811–13816

    Article  CAS  Google Scholar 

  2. Watrous J, Roach P, Heath B, Alexandrov T, Laskin J, Dorrestein PC (2013) Metabolic profiling directly from the petri dish using nanospray desorption electrospray ionization imaging mass spectrometry. Anal Chem 85(21):10385–10391

    Article  CAS  Google Scholar 

  3. Walter A, Erdmann S, Bocklitz T, Jung EM, Vogler N, Akimov D, Dietzek B, Rosch P, Kothe E, Popp J (2010) Analysis of the cytochrome distribution via linear and nonlinear Raman spectroscopy. Analyst 135(5):908–917

    Article  CAS  Google Scholar 

  4. Popp J, Tuchin VV, Chiou A, Heinemann SH (2011) Volume 1: basics and techniques. Handbook of biophotonics. Chiou A HS, Popp J, Tučin VV (eds). Wiley-VCH

  5. Kertesz V, Van Berkel GJ (2010) Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J Mass Spectrom 45(3):252–260

    Article  CAS  Google Scholar 

  6. Harz M, Rosch P, Popp J (2009) Vibrational spectroscopy—a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A 75(2):104–113

    Article  CAS  Google Scholar 

  7. Krafft C, Dietzek B, Popp J (2009) Raman and CARS microspectroscopy of cells and tissues. Analyst 134(6):1046–1057

    Article  CAS  Google Scholar 

  8. Delhaye M, Dhamelincourt P (1975) Raman microprobe and microscope with laser excitation. J Raman Spectrosc 3(1):33–43

    Article  CAS  Google Scholar 

  9. Tague T (2009) Infrared and Raman microscopy: pushing the limits of spatial resolution. Microsc Microanal 15(Supplement S2):562–563

    Article  Google Scholar 

  10. Eikel D, Vavrek M, Smith S, Bason C, Yeh S, Korfmacher WA, Henion JD (2011) Liquid extraction surface analysis mass spectrometry (LESA-MS) as a novel profiling tool for drug distribution and metabolism analysis: the terfenadine example. Rapid Commun Mass Spectrom 25(23):3587–3596

    Article  CAS  Google Scholar 

  11. Johnson D, Krsek M, Wellington EMH, Stott AW, Cole L, Bardgett RD, Read DJ, Leake JR (2005) Soil invertebrates disrupt carbon flow through fungal networks. Science 309(5737):1047

    Article  CAS  Google Scholar 

  12. Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol 50(1):5–20

    Article  CAS  Google Scholar 

  13. Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  14. Eriksson KEL, Blanchette RA, Ander P. (2012) Microbial and enzymatic degradation of wood and wood components. Springer London, Limited

  15. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiol Rev 13(2–3):125–135

    Article  CAS  Google Scholar 

  16. Rayner ADM, Griffith GS, Howard GW (1994) Induction of metabolic and morphogenetic changed during mycelial interactions among species of higher fungi. Biochem Soc Trans 22:389–394

    CAS  Google Scholar 

  17. Rayner ADM, Webber JF (1984) Interspecific mycelial interactions—an overview. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 383–417

    Google Scholar 

  18. White NA, Boddy L (1992) Extracellular enzyme localization during interspecific fungal interactions. FEMS Microbiol Lett 98(1–3):75–79

    Article  CAS  Google Scholar 

  19. Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31(3):185–194

    Article  CAS  Google Scholar 

  20. Rayner ADM (1991) The challenge of the individualistic mycelium. Mycologia 83(1):48–71

    Article  Google Scholar 

  21. Raudaskoski M, Kothe E (2010) Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell 9(6):847–859

    Article  CAS  Google Scholar 

  22. Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kues U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FW, vanKuyk PA, Horton JS, Grigoriev IV, Wosten HA (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28(9):957–963

    Article  CAS  Google Scholar 

  23. Papazian HP (1950) The physiology of the incompatibility factors in Schizophyllum commune. Bot Gaz 112:143–163

    Article  Google Scholar 

  24. Miles PG, Lund H, Raper JR (1956) The identification of indigo as a pigment produced by a mutant culture of Schizophyllum commune. Arch Biochem Biophys 62(1):1–5

    Article  CAS  Google Scholar 

  25. Willstaedt H (1935) Über die Farbstoffe des echten Reizkers (Lactarius deliciosus L.) (I. Mitteil.). Ber Dtsch Chem Ges A B Ser 68(2):333–340

    Article  Google Scholar 

  26. Willstaedt H (1936) Über die Farbstoffe des echten Reizkers (Lactarius deliciosus L.) (II. Mitteil.). Ber Dtsch Chem Ges A B Ser 69(5):997–1001

    Article  Google Scholar 

  27. Kögl F, Erxleben H, Jänecke L (1930) Untersuchungen über Pilzfarbstoffe. IX. Die Konstitution der Thelephorsäure. Justus Liebigs Ann Chem 482(1):105–119

    Article  Google Scholar 

  28. Kögl F, Deijs WB (1935) Untersuchungen über Pilzfarbstoffe. XI. Über Boletol, den Farbstoff der blau anlaufenden Boleten. Justus Liebigs Ann Chem 515(1):10–23

    Article  Google Scholar 

  29. Cartwright KSG, Findlay WPK (1946) Decay of timber and its prevention. Her Majesty’s Stationary Office, London

    Google Scholar 

  30. Ujor VC, Monti M, Peiris DG, Clements MO, Hedger JN (2012) The mycelial response of the white-rot fungus, Schizophyllum commune to the biocontrol agent, Trichoderma viride. Fungal Biol 116(2):332–341

    Article  Google Scholar 

  31. Schwalb MN, Miles PG (1967) Morphogenesis of Schizophyllum commune. II. Effect of microaerobic growth. Mycologia 59:610–622

    Article  CAS  Google Scholar 

  32. Miljkovic M, Chernenko T, Romeo MJ, Bird B, Matthaus C, Diem M (2010) Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135(8):2002–2013

    Article  CAS  Google Scholar 

  33. Hedegaard M, Matthäus C, Hassing S, Krafft C, Diem M, Popp J (2011) Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theor Chem Accounts 130:1249–1260

    Article  CAS  Google Scholar 

  34. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40:W127–133, Web Server issue

    Article  CAS  Google Scholar 

  35. Wang CS, Miles PG (1966) Studies of the cell walls of Schizophyllum commune. Am J Bot 53(8):792–800

    Article  CAS  Google Scholar 

  36. Tuma R (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J Raman Spectrosc 36(4):307–319

    Article  CAS  Google Scholar 

  37. Zhang K, Geissler A, Fischer S, Brendler E, Bäucker E (2012) Solid-state spectroscopic characterization of α-chitins deacetylated in homogeneous solutions. J Phys Chem B 116(15):4584–4592

    Article  CAS  Google Scholar 

  38. Lee CM, Cho E-M, Yang SI, Ganbold E-O, Jun J, Cho K-H (2013) Raman spectroscopy and density functional theory calculations of β-glucans and chitins in fungal cell walls. Bull Korean Chem Soc 34(3):943–945

    Article  CAS  Google Scholar 

  39. Bauer H, Kowski K, Kuhn H, Lüttke W, Rademacher P (1998) Photoelectron spectra and electronic structures of some indigo dyes. J Mol Struct 445(1–3):277–286

    Article  CAS  Google Scholar 

  40. Baran A, Fiedler A, Schulz H, Baranska M (2010) In situ Raman and IR spectroscopic analysis of indigo dye. Anal Methods 2(9):1372

    Article  CAS  Google Scholar 

  41. Falconer RE, Bown JL, White NA, Crawford JW (2008) Modelling interactions in fungi. J R Soc Interface 5(23):603–615

    Article  Google Scholar 

  42. Swack NS, Miles PG (1960) Conditions affecting growth and indigotin production by strain 130 of Schizophyllum commune. Mycologia 52(4):574–583

    Article  Google Scholar 

  43. Abadulla E, Robra K-H, Gübitz GM, Silva LM, Cavaco-Paulo A (2000) Enzymatic decolorization of textile dyeing effluents. Textile Res J 70(5):409–414

    Article  CAS  Google Scholar 

  44. Medvedev A, Buneeva O, Glover V (2007) Biological targets for isatin and its analogues: implications for therapy. Biologics 1(2):151–162

    CAS  Google Scholar 

  45. Sriram D, Bal TR, Yogeeswari P (2004) Design, synthesis and biological evaluation of novel non-nucleoside HIV-1 reverse transcriptase inhibitors with broad-spectrum chemotherapeutic properties. Bioorg Med Chem 12(22):5865–5873

    Article  CAS  Google Scholar 

  46. Chohan ZH, Pervez H, Rauf A, Khan KM, Supuran CT (2004) Isatin-derived antibacterial and antifungal compounds and their transition metal complexes. J Enzyme Inhib Med Chem 19(5):417–423

    Article  CAS  Google Scholar 

  47. Velišek J, Cejpek K (2011) Pigments of higher fungi—a review. Czech J Food Sci 29:87–102

    Google Scholar 

  48. Epstein E, Miles P (1966) Identification of indirubin as a pigment produced by mutant cultures of the fungus Schizophyllum commune. J Plant Res 79:566–571

    CAS  Google Scholar 

  49. Hosoe T, Nozawa K, Kawahara N, Fukushima K, Nishimura K, Miyaji M, Kawai K (1999) Isolation of a new potent cytotoxic pigment along with indigotin from the pathogenic basidiomycetous fungus Schizophyllum commune. Mycopathologia 146(1):9–12

    Article  CAS  Google Scholar 

  50. Henion J, Eikel D, Linehan SL, Heller D, Murphy K, Rudewicz PJ & Prosser SJ (2011) Liquid extraction surface analysis mass spectrometry (LESA MS) - drug distribution and metabolism of diclofenac in the mouse. in 59th Conference of the American Society for Mass Spectrometry. Denver

  51. Agilent Technologies I. Considerations for selecting GC/MS or LC/MS for metabolomics. 2007; Available from: http://www.chem.agilent.com/Library/selectionguide/Public/5989-6328EN.pdf

  52. Schubert D, Raudaskoski M, Knabe N, Kothe E (2006) Ras GTPase-activating protein gap1 of the homobasidiomycete Schizophyllum commune regulates hyphal growth orientation and sexual development. Eukaryot Cell 5(4):683–695

    Article  CAS  Google Scholar 

  53. Kai M, Gonzalez I, Genilloud O, Singh SB, Svatos A (2012) Direct mass spectrometric screening of antibiotics from bacterial surfaces using liquid extraction surface analysis. Rapid Commun Mass Spectrom 26(20):2477–2482

    Article  CAS  Google Scholar 

  54. Porta T, Varesio E, Hopfgartner G (2013) Gas-phase separation of drugs and metabolites using modifier-assisted differential ion mobility spectrometry hyphenated to liquid extraction surface analysis and mass spectrometry. Anal Chem 85(24):11771–11779

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (Jena School of Microbial Communication—MikroInter). Thanks to Imam Hardiman for conceiving the idea of the co-cultures and Elke-Martina Jung for help with Fig. 1. We thank Dr. Matthias Gube for providing strains and Petra Mitscherlich for general technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Svatoš.

Additional information

Published in the topical collection Mass Spectrometry Imaging with guest editors Andreas Römpp and Uwe Karst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, R.C., Kai, M., Krause, K. et al. Monitoring metabolites from Schizophyllum commune interacting with Hypholoma fasciculare combining LESA–HR mass spectrometry and Raman microscopy. Anal Bioanal Chem 407, 2273–2282 (2015). https://doi.org/10.1007/s00216-014-8383-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8383-6

Keywords

Navigation