Skip to main content
Log in

Mass-spectrometry-based microbial metabolomics: recent developments and applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metabolomics is an omics technique aiming at qualitatively and quantitatively describing a metabolome by various analytical platforms. It is an indispensable component of modern systems biology. Microbial metabolomics can be roughly classified as metabolic footprint analysis and metabolic fingerprint analysis depending on the analyte origins. Both of them have been beneficial to microbiological research for different reasons. Mass spectrometry and nuclear magnetic resonance spectroscopy techniques are popular analytical strategies prevailing in the metabolomics field. In this review, chromatography–mass-spectrometry-based microbial metabolomic analysis steps are summarized, including sample collection, metabolite extraction, instrument analysis, and data analysis. Moreover, their applications in some representative fields are discussed as examples. The aim of this review is to present briefly recent technical advances in mass-spectrometry-based analysis, and to highlight the value of modern applications of microbial metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van der Greef J, Hankemeier T, McBurney RN (2006) Metabolomics-based systems biology and personalized medicine: moving towards n = 1 clinical trials? Pharmacogenomics 7(7):1087–1094

    Article  Google Scholar 

  2. Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689

    Article  CAS  Google Scholar 

  3. van der Werf MJ, Overkamp KM, Muilwijk B, Coulier L, Hankemeier T (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 370(1):17–25

    Article  Google Scholar 

  4. van der Werf MJ, Jellema RH, Hankemeier T (2005) Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol 32(6):234–252

    Article  Google Scholar 

  5. Jewison T, Knox C, Neveu V, Djoumbou Y, Guo AC, Lee J, Liu P, Mandal R, Krishnamurthy R, Sinelnikov I, Wilson M, Wishart DS (2012) YMDB: the Yeast Metabolome Database. Nucleic Acids Res 40(5):D815–D820

    Article  CAS  Google Scholar 

  6. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58(1):1–26

    Article  Google Scholar 

  7. Carneiro S, Villas-Boas SG, Ferreira EC, Rocha I (2011) Metabolic footprint analysis of recombinant Escherichia coli strains during fed-batch fermentations. Mol Biosyst 7(3):899–910

    CAS  Google Scholar 

  8. Sue T, Obolonkin V, Griffiths H, Villas-Boas SG (2011) An exometabolomics approach to monitoring microbial contamination in microalgal fermentation processes by using metabolic footprint analysis. Appl Environ Microbiol 77(21):7605–7610

    Article  CAS  Google Scholar 

  9. Pope GA, MacKenzie DA, Defernez M, Aroso MA, Fuller LJ, Mellon FA, Dunn WB, Brown M, Goodacre R, Kell DB, Marvin ME, Louis EJ, Roberts IN (2007) Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast 24(8):667–679

    Article  CAS  Google Scholar 

  10. Orriss IR, Knight GE, Utting JC, Taylor SE, Burnstock G, Arnett TR (2009) Hypoxia stimulates vesicular ATP release from rat osteoblasts. J Cell Physiol 220(1):155–162

    Article  CAS  Google Scholar 

  11. Mortensen SP, Thaning P, Nyberg M, Saltin B, Hellsten Y (2011) Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique. J Physiol 589(7):1847–1857

    Article  CAS  Google Scholar 

  12. Hiller J, Franco-Lara E, Papaioannou V, Weuster-Botz D (2007) Fast sampling and quenching procedures for microbial metabolic profiling. Biotechnol Lett 29(8):1161–1167

    Article  CAS  Google Scholar 

  13. Gonzalez B, Francois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13(14):1347–1355

    Article  CAS  Google Scholar 

  14. Wang X, Xie Y, Gao P, Zhang S, Tan H, Yang F, Lian R, Tian J, Xu G (2014) A metabolomics-based method for studying the effect of yfcC gene in Escherichia coli on metabolism. Anal Biochem 451:48–55

    Article  CAS  Google Scholar 

  15. Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19(1):5–15

    Article  CAS  Google Scholar 

  16. Tian J, Sang P, Gao P, Fu R, Yang D, Zhang L, Zhou J, Wu S, Lu X, Li Y, Xu G (2009) Optimization of a GC-MS metabolic fingerprint method and its application in characterizing engineered bacterial metabolic shift. J Sep Sci 32(13):2281–2288

    Article  CAS  Google Scholar 

  17. Winder CL, Dunn WB, Schuler S, Broadhurst D, Jarvis R, Stephens GM, Goodacre R (2008) Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Anal Chem 80(8):2939–2948

    Article  CAS  Google Scholar 

  18. Sasidharan K, Soga T, Tomita M, Murray DB (2012) A yeast metabolite extraction protocol optimised for time-series analyses. PLoS ONE 7(8):e44283

    Article  CAS  Google Scholar 

  19. Wellerdiek M, Winterhoff D, Reule W, Brandner J, Oldiges M (2009) Metabolic quenching of Corynebacterium glutamicum: efficiency of methods and impact of cold shock. Bioprocess Biosyst Eng 32(5):581–592

    Article  CAS  Google Scholar 

  20. Villas-Bôas SG, Bruheim P (2007) Cold glycerol-saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Anal Biochem 370(1):87–97

    Article  Google Scholar 

  21. Faijes M, Mars AE, Smid EJ (2007) Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microb Cell Fact 6:27

    Article  Google Scholar 

  22. Lee SH, Kim S, Kwon MA, Jung YH, Shin YA, Kim KH (2014) Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum. Biotechnol Bioeng. doi:10.1002/bit.25314

    Google Scholar 

  23. Kim S, Lee DY, Wohlgemuth G, Park HS, Fiehn O, Kim KH (2013) Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Anal Chem 85(4):2169–2176

    Article  CAS  Google Scholar 

  24. Schaub J, Schiesling C, Reuss M, Dauner M (2006) Integrated sampling procedure for metabolome analysis. Biotechnol Prog 22(5):1434–1442

    Article  CAS  Google Scholar 

  25. Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270(1):88–96

    Article  CAS  Google Scholar 

  26. van Gulik WM (2010) Fast sampling for quantitative microbial metabolomics. Curr Opin Biotechnol 21(1):27–34

    Article  Google Scholar 

  27. Buziol S, Bashir I, Baumeister A, Claassen W, Noisommit-Rizzi N, Mailinger W, Reuss M (2002) New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnol Bioeng 80(6):632–636

    Article  CAS  Google Scholar 

  28. Brauer MJ, Yuan J, Bennett BD, Lu W, Kimball E, Botstein D, Rabinowitz JD (2006) Conservation of the metabolomic response to starvation across two divergent microbes. Proc Natl Acad Sci U S A 103(51):19302–19307

    Article  CAS  Google Scholar 

  29. Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79(10):3843–3849

    Article  CAS  Google Scholar 

  30. Fei F, Bowdish DM, McCarry BE (2014) Comprehensive and simultaneous coverage of lipid and polar metabolites for endogenous cellular metabolomics using HILIC-TOF-MS. Anal Bioanal Chem 406(15):3723–3733

    Article  CAS  Google Scholar 

  31. Bean HD, Dimandja JM, Hill JE (2012) Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr B 901:41–46

    Article  CAS  Google Scholar 

  32. Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78(4):1272–1281

    Article  CAS  Google Scholar 

  33. Hossain SM, Bojko B, Pawliszyn J (2013) Automated SPME-GC-MS monitoring of headspace metabolomic responses of E. coli to biologically active components extracted by the coating. Anal Chim Acta 776:41–49

    Article  CAS  Google Scholar 

  34. Koo I, Shi X, Kim S, Zhang X (2014) iMatch2: Compound identification using retention index for analysis of gas chromatography-mass spectrometry data. J Chromatogr A 1337:202–210

    Article  CAS  Google Scholar 

  35. Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, Stein SE (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A 1157(1–2):414–421

    Article  CAS  Google Scholar 

  36. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81(24):10038–10048

    Article  CAS  Google Scholar 

  37. Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286(29):25435–25442

    Article  CAS  Google Scholar 

  38. Purcaro G, Tranchida PQ, Dugo P, La CE, Bisignano G, Conte L, Mondello L (2010) Characterization of bacterial lipid profiles by using rapid sample preparation and fast comprehensive two-dimensional gas chromatography in combination with mass spectrometry. J Sep Sci 33(15):2334–2340

    Article  CAS  Google Scholar 

  39. Kiefer P, Delmotte N, Vorholt JA (2011) Nanoscale ion-pair reversed-phase HPLC-MS for sensitive metabolome analysis. Anal Chem 83(3):850–855

    Article  CAS  Google Scholar 

  40. Farag MA, Gad HA, Heiss AG, Wessjohann LA (2014) Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics. Food Chem 151:333–342

    Article  CAS  Google Scholar 

  41. Zhou B, Xiao JF, Tuli L, Ressom HW (2012) LC-MS-based metabolomics. Mol Biosyst 8(2):470–481

    Article  CAS  Google Scholar 

  42. Li Q, Lynen F, Wang J, Li H, Xu G, Sandra P (2012) Comprehensive hydrophilic interaction and ion-pair reversed-phase liquid chromatography for analysis of di- to deca-oligonucleotides. J Chromatogr A 1255:237–243

    Article  CAS  Google Scholar 

  43. Wang Y, Wang J, Yao M, Zhao X, Fritsche J, Schmitt-Kopplin P, Cai Z, Wan D, Lu X, Yang S, Gu J, Haring HU, Schleicher ED, Lehmann R, Xu G (2008) Metabonomics study on the effects of the ginsenoside Rg3 in a beta-cyclodextrin-based formulation on tumor-bearing rats by a fully automatic hydrophilic interaction/reversed-phase column-switching HPLC-ESI-MS approach. Anal Chem 80(12):4680–4688

    Article  CAS  Google Scholar 

  44. Yuan M, Breitkopf SB, Yang X, Asara JM (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 7(5):872–881

    Article  CAS  Google Scholar 

  45. Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74(10):2233–2239

    Article  CAS  Google Scholar 

  46. Itoh A, Ohashi Y, Soga T, Mori H, Nishioka T, Tomita M (2004) Application of capillary electrophoresis-mass spectrometry to synthetic in vitro glycolysis studies. Electrophoresis 25(13):1996–2002

    Article  CAS  Google Scholar 

  47. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2(5):488–494

    Article  CAS  Google Scholar 

  48. Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30(1):276–291

    Article  CAS  Google Scholar 

  49. Soga T, Ueno Y, Naraoka H, Matsuda K, Tomita M, Nishioka T (2002) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal Chem 74(24):6224–6229

    Article  CAS  Google Scholar 

  50. Soga T, Igarashi K, Ito C, Mizobuchi K, Zimmermann HP, Tomita M (2009) Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem 81(15):6165–6174

    Article  CAS  Google Scholar 

  51. Monton MR, Soga T (2007) Metabolome analysis by capillary electrophoresis-mass spectrometry. J Chromatogr A 1168(1–2):237–246

    Article  CAS  Google Scholar 

  52. Sugimoto M, Kikuchi S, Arita M, Soga T, Nishioka T, Tomita M (2005) Large-scale prediction of cationic metabolite identity and migration time in capillary electrophoresis mass spectrometry using artificial neural networks. Anal Chem 77(1):78–84

    Article  CAS  Google Scholar 

  53. Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62(6):929–937

    Article  CAS  Google Scholar 

  54. Hsu CC, ElNaggar MS, Peng Y, Fang J, Sanchez LM, Mascuch SJ, Moller KA, Alazzeh EK, Pikula J, Quinn RA, Zeng Y, Wolfe BE, Dutton RJ, Gerwick L, Zhang L, Liu X, Mansson M, Dorrestein PC (2013) Real-time metabolomics on living microorganisms using ambient electrospray ionization flow-probe. Anal Chem 85(15):7014–7018

    Article  CAS  Google Scholar 

  55. Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22(11):1459–1466

    Article  CAS  Google Scholar 

  56. Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158(1–2):318–328

    Article  CAS  Google Scholar 

  57. Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78(2):567–574

    Article  CAS  Google Scholar 

  58. Steuer R, Morgenthal K, Weckwerth W, Selbig J (2007) A gentle guide to the analysis of metabolomic data. Methods Mol Biol 358:105–126

    Article  CAS  Google Scholar 

  59. Gromski PS, Xu Y, Kotze HL, Correa E, Ellis DI, Armitage EG, Turner ML, Goodacre R (2014) Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites 4(2):433–452

    Article  CAS  Google Scholar 

  60. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787

    Article  CAS  Google Scholar 

  61. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636

    Article  CAS  Google Scholar 

  62. Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(W1):W127–W133

    Article  CAS  Google Scholar 

  63. Sysi-Aho M, Katajamaa M, Yetukuri L, Oresic M (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinform 8:93

    Article  Google Scholar 

  64. Probert CS, Jones PR, Ratcliffe NM (2004) A novel method for rapidly diagnosing the causes of diarrhoea. Gut 53(1):58–61

    Article  CAS  Google Scholar 

  65. Schmerler D, Neugebauer S, Ludewig K, Bremer-Streck S, Brunkhorst FM, Kiehntopf M (2012) Targeted metabolomics for discrimination of systemic inflammatory disorders in critically ill patients. J Lipid Res 53(7):1369–1375

    Article  CAS  Google Scholar 

  66. Schmidt FR (2004) The challenge of multidrug resistance: actual strategies in the development of novel antibacterials. Appl Microbiol Biotechnol 63(4):335–343

    Article  CAS  Google Scholar 

  67. Allen J, Davey HM, Broadhurst D, Rowland JJ, Oliver SG, Kell DB (2004) Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Appl Environ Microbiol 70(10):6157–6165

    Article  CAS  Google Scholar 

  68. Yu Y, Yi ZB, Liang YZ (2007) Main antimicrobial components of Tinospora capillipes, and their mode of action against Staphylococcus aureus. FEBS Lett 581(22):4179–4183

    Article  CAS  Google Scholar 

  69. Gombert AK, dos Moreira SM, Christensen B, Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183(4):1441–1451

    Article  CAS  Google Scholar 

  70. Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19(1):45–50

    Article  CAS  Google Scholar 

  71. Saito N, Robert M, Kitamura S, Baran R, Soga T, Mori H, Nishioka T, Tomita M (2006) Metabolomics approach for enzyme discovery. J Proteome Res 5(8):1979–1987

    Article  CAS  Google Scholar 

  72. Xia M, Huang D, Li S, Wen J, Jia X, Chen Y (2013) Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnol Bioeng 110(10):2717–2730

    Article  CAS  Google Scholar 

  73. Ma Q, Zhou J, Zhang W, Meng X, Sun J, Yuan YJ (2011) Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLoS ONE 6(10):e26108

    Article  CAS  Google Scholar 

  74. Zha Y, Westerhuis JA, Muilwijk B, Overkamp KM, Nijmeijer BM, Coulier L, Smilde AK, Punt PJ (2014) Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnol 14:22. doi:10.1186/1472-6750-14-22

    Article  Google Scholar 

  75. Viegelmann C, Margassery LM, Kennedy J, Zhang T, O'Brien C, O'Gara F, Morrissey JP, Dobson AD, Edrada-Ebel R (2014) Metabolomic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar Drugs 12(6):3323–3351

    Article  CAS  Google Scholar 

  76. Cortina NS, Krug D, Plaza A, Revermann O, Muller R (2012) Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem Int Ed 51(3):811–816

    Article  CAS  Google Scholar 

  77. Loh KD, Gyaneshwar P, Markenscoff PE, Fong R, Kim KS, Parales R, Zhou Z, Inwood W, Kustu S (2006) A previously undescribed pathway for pyrimidine catabolism. Proc Natl Acad Sci U S A 103(13):5114–5119

    Article  CAS  Google Scholar 

  78. Guo C, Huang XY, Yang MJ, Wang S, Ren ST, Li H, Peng XX (2014) GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. Fish Shellfish Immunol 39(2):215–222

    Article  CAS  Google Scholar 

  79. van Duynhoven J, van der Hooft JJ, van Dorsten FA, Peters S, Foltz M, Gomez-Roldan V, Vervoort J, de Vos RC, Jacobs DM (2014) Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption. J Proteome Res 13(5):2668–2678

    Article  Google Scholar 

  80. Settachaimongkon S, Nout MJ, Antunes Fernandes EC, Hettinga KA, Vervoort JM, van Hooijdonk TC, Zwietering MH, Smid EJ, van Valenberg HJ (2014) Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int J Food Microbiol 177:29–36

    Article  Google Scholar 

  81. Liebeke M, Meyer H, Donat S, Ohlsen K, Lalk M (2010) A metabolomic view of Staphylococcus aureus and its Ser/Thr kinase and phosphatase deletion mutants: involvement in cell wall biosynthesis. Chem Biol 17(8):820–830

    Article  CAS  Google Scholar 

  82. Eoh H, Rhee KY (2014) Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci U S A 111(13):4976–4981

    Article  CAS  Google Scholar 

  83. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63

    Article  CAS  Google Scholar 

  84. Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W (2013) Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 6(1):106

    Article  CAS  Google Scholar 

  85. Yang C, Hua Q, Baba T, Mori H, Shimizu K (2003) Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol Bioeng 84(2):129–144

    Article  Google Scholar 

  86. Mas S, Villas-Boas SG, Hansen ME, Akesson M, Nielsen J (2007) A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants. Biotechnol Bioeng 96(5):1014–1022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Basic Research Program (2007CB707800) of the State Ministry of Science and Technology of China, the Knowledge Innovation Program of the Chinese Academy of Sciences, the Foundation (no. 21175132), the Creative Research Group Project (no. 21321064), and the Surface Project (81372695) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowang Xu.

Additional information

Published in the topical collection celebrating ABCs 13th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Xu, G. Mass-spectrometry-based microbial metabolomics: recent developments and applications. Anal Bioanal Chem 407, 669–680 (2015). https://doi.org/10.1007/s00216-014-8127-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8127-7

Keywords

Navigation