Skip to main content
Log in

Evaluation of molecularly imprinted polymers using 2′,3′,5′-tri-O-acyluridines as templates for pyrimidine nucleoside recognition

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we describe the synthesis and evaluation of molecularly imprinted polymers (MIPs), prepared using 2′,3′,5′-tri-O-acyluridines as ‘dummy’ templates, for the selective recognition of uridine nucleosides. The MIPs were synthesised using a non-covalent approach with 2,6-bis-acrylamidopyridine (BAAPy) acting as the binding monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent. The MIPs were evaluated in terms of capacity, selectivity and specificity by analytical and frontal liquid chromatography measurements. The results obtained in organic mobile phases suggest that the nucleosides are specifically bound to the polymer by the complementary hydrogen bonding motifs of the binding monomer and the nucleoside bases. The MIPs exhibited relatively high imprinting factors for 2′,3′,5′-tri-O-acyluridines, while they did not show any binding capacity for other nucleosides lacking the imide moiety on their base. Moreover, the presence of ester-COO groups in the EGDMA cross-linker may lead to the formation of additional hydrogen bonds with the 2′,3′ and/or 5′-OH of sugar part, allowing enhancement of the recognition of the uridine nucleosides. In aqueous media, results show that the binding is driven by hydrophobic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agrofoglio LA, Challand SR (1998) Acyclic, Carbocyclic and L-Nucleosides. Kluwer Academic Publishers, Netherlands

    Book  Google Scholar 

  2. Borek E, Baliga BS, Gehrke CW, Kuo CW, Belman S, Troll W, Waalkes TP (1977) High turnover rate of transfer RNA in tumor tissue. Cancer Res 37(9):3362–3366

    CAS  Google Scholar 

  3. Seidel A, Brunner S, Seidel P, Fritz GI, Herbarth O (2006) Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control. Br J Cancer 94(11):1726–1733

    CAS  Google Scholar 

  4. Galmarini CM, Popowycz F, Joseph B (2008) Cytotoxic nucleoside analogues: different strategies to improve their clinical efficacy. Curr Med Chem 15(11):1072–1082

    Article  CAS  Google Scholar 

  5. Galmarini CM, Jordheim L, Dumontet C (2003) Pyrimidine nucleoside analogs in cancer treatment. Expert Rev Anticancer Ther 3(5):717–728

    Article  CAS  Google Scholar 

  6. Cohen S, Jordheim LP, Megherbi M, Dumontet C, Guitton J (2010) Liquid chromatographic methods for the determination of endogenous nucleotides and nucleotide analogs used in cancer therapy: a review. J Chromatogr B Anal Technol Biomed Life Sci 878(22):1912–1928

    Article  CAS  Google Scholar 

  7. Hsu WY, Lin WD, Tsai Y, Lin CT, Wang HC, Jeng LB, Lee CC, Lin YC, Lai CC, Tsai FJ (2011) Analysis of urinary nucleosides as potential tumor markers in human breast cancer by high performance liquid chromatography/electrospray ionization tandem mass spectrometry. Clin Chim Acta Int J Clin Chem 412(19–20):1861–1866

    Article  CAS  Google Scholar 

  8. Inaba Y, Koide S, Yokoyama K, Karube I (2011) Development of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) measurement method combined with SPE. J Chromatogr Sci 49(4):303–309

    Article  CAS  Google Scholar 

  9. Breton F, Delepee R, Agrofoglio LA (2009) Molecular imprinting of AMP by an ionic-noncovalent dual approach. J Sep Sci 32(19):3285–3291

    Article  CAS  Google Scholar 

  10. Breton F, Delepee R, Jegourel D, Deville-Bonne D, Agrofoglio LA (2008) Selective adenosine-5′-monophosphate uptake by water-compatible molecularly imprinted polymer. Anal Chim Acta 616(2):222–229

    Article  CAS  Google Scholar 

  11. Mosbach KRO (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Nat Biotechnol 14(2)

  12. Shea KJ (1994) Molecular imprinting of synthetic network polymers: the de novo synthesis of macromolecular binding and catalytic sites. Trend Polym Sci 2(5):166–173

    CAS  Google Scholar 

  13. Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed Engl 34(17):1812–1832

    Article  CAS  Google Scholar 

  14. Lebal N, Hallil H, Dejous C, Plano B, Krstulja A, Delepee R, Rebiere D, Agrofoglio L (2013) Association of a Love wave sensor to thin film molecularly imprinted polymers for nucleosides analogs detection. In: Nano/μ Engineered and Molecular Systems (NEMS), 2013 8th IEEE International Conference on. IEEE, pp 550-553

  15. Turiel E, Martin-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta 668(2):87–99

    Article  CAS  Google Scholar 

  16. Manesiotis P, Borrelli C, Aureliano CSA, Svensson C, Sellergren B (2009) Water-compatible imprinted polymers for selective depletion of riboflavine from beverages. J Mater Chem 19(34):6185–6193

    Article  CAS  Google Scholar 

  17. Lakka A, Tsakalof A (2013) Molecular imprinting of tri-O-acetyladenosine for the synthetic imitation of an ATP-binding cleft in protein kinases. Chem Plus Chem 78(8):808–815

    CAS  Google Scholar 

  18. Spivak DA, Shea KJ (1998) Binding of nucleotide bases by imprinted polymers. Macromolecules 31(7):2160–2165

    Article  CAS  Google Scholar 

  19. Umpleby RJ, Rushton GT, Shah RN, Rampey AM, Bradshaw JC, Berch JK, Shimizu KD (2001) Recognition directed site-selective chemical modification of molecularly imprinted polymers. Macromolecules 34(24):8446–8452

    Article  CAS  Google Scholar 

  20. Beltran A, Borrull F, Cormack PAG, Marce RM (2011) Molecularly imprinted polymer with high-fidelity binding sites for the selective extraction of barbiturates from human urine. J Chromatogr A 1218(29):4612–4618

    Article  CAS  Google Scholar 

  21. Hall AJMP, Mossing JT, Sellergren B (2002) Molecularly imprinted polymers (MIPs) against uracils: functional monomer design, monomer-template interactions in solution and MIP performance in chromatography. Mat Res Soc Symp Proc 723:93–103

    Google Scholar 

  22. Kim H, Guiochon G (2005) Thermodynamic functions and intraparticle mass transfer kinetics of structural analogues of a template on molecularly imprinted polymers in liquid chromatography. J Chromatogr A 1097:84–97

    Article  CAS  Google Scholar 

  23. Kim H, Kaczmarski K, Guiochon G (2006) Thermodynamic analysis of the heterogenous binding sites of molecularly imprinted polymers. J Chromatogr A 1101:136–152

    Article  CAS  Google Scholar 

  24. Umpleby Ii RJ, Baxter SC, Rampey AM, Rushton GT, Chen Y, Shimizu KD (2004) Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J Chromatogr B 804(1):141–149

    Article  Google Scholar 

  25. Winqvist A, Strömberg R (2008) Investigation on condensing agents for phosphinate ester formation with nucleoside 5′-hydroxyl functions. Eur J Org Chem 2008(10):1705–1714

    Article  Google Scholar 

  26. Yano K, Tanabe K, Takeuchi T, Matsui J, Ikebukuro K, Karube I (1998) Molecularly imprinted polymers which mimic multiple hydrogen bonds between nucleotide bases. Anal Chim Acta 363:111–117

    Article  CAS  Google Scholar 

  27. Lanza F, Hall AJ, Sellergren B, Bereczki A, Horvai G, Bayoudh S, Cormack PAG, Sherrington DC (2001) Development of a semiautomated procedure for the synthesis and evaluation of molecularly imprinted polymers applied to the search for functional monomers for phenytoin and nifedipine. Anal Chim Acta 435(1):91–106

    Article  CAS  Google Scholar 

  28. Wang J, Guo R, Chen J, Zhang Q, Liang X (2005) Phenylurea herbicides-selective polymer prepared by molecular imprinting using N-(4-isopropylphenyl)-N2-butyleneurea as dummy template. Anal Chim Acta 540(2):307–315

    Article  CAS  Google Scholar 

  29. Piletsky SA, Piletska EV, Karim K, Freebairn KW, Legge CH, Turner APF (2002) Polymer cookery: influence of polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 35(19):7499–7504

    Article  CAS  Google Scholar 

  30. Cook JL, Hunter CA, Low CMR, Perez-Velasco A, Vinter JG (2007) Solvent effects on hydrogen bonding. Angew Chem Int Ed 46(20):3706–3709

    Article  CAS  Google Scholar 

  31. Manesiotis P, Hall AJ, Courtois J, Irgum K, Sellergren B (2005) An artificial riboflavin receptor prepared by a template analogue imprinting strategy. Angew Chem Int Ed 44(25):3902–3906

    Article  CAS  Google Scholar 

  32. Desiraju GRST (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  33. Schram KH (1998) Urinary nucleosides. Mass Spectrom Rev 17(3):131–251

    Article  CAS  Google Scholar 

  34. Yamamoto T, Koyama H, Kurajoh M, Shoji T, Tsutsumi Z, Moriwaki Y (2011) Biochemistry of uridine in plasma. Clin Chim Acta 412:1712–1724

    Article  CAS  Google Scholar 

  35. Janiak DS, Kofinas P (2007) Molecular imprinting of peptides and proteins in aqueous media. Anal Bioanal Chem 389(2):399–404

    Article  CAS  Google Scholar 

  36. Rushton GT, Karns CL, Shimizu KD (2005) A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs). Anal Chim Acta 528(1):107–113

    Article  CAS  Google Scholar 

  37. Urraca JL, Hall AJ, Moreno-Bondi MC, Sellergren B (2006) A stoichiometric molecularly imprinted polymer for the class-selective recognition of antibiotics in aqueous media. Angew Chem Int Ed 45(31):5158–5161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by ANR-10-TECS-0004. Aleksandra Krstulja is grateful to ANR for a doctoral scholarship. Stefania Lettieri is grateful to the University of Kent for a doctoral scholarship. The authors also thank Dr. Panagiotis Manesiotis (Queen’s University, Belfast) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew J. Hall or Luigi A. Agrofoglio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.24 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krstulja, A., Lettieri, S., Hall, A.J. et al. Evaluation of molecularly imprinted polymers using 2′,3′,5′-tri-O-acyluridines as templates for pyrimidine nucleoside recognition. Anal Bioanal Chem 406, 6275–6284 (2014). https://doi.org/10.1007/s00216-014-8017-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8017-z

Keywords

Navigation