Skip to main content
Log in

Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem Int Ed 48(5):872–897

    Article  CAS  Google Scholar 

  2. Discher DE, Ortiz V, Srinivas G, Klein ML, Kim Y, Christian D, Cai S, Photos P, Ahmed F (2007) Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog Polym Sci 32:838–857

    Article  CAS  Google Scholar 

  3. Le Meins J-F, Sandre O, Lecommandoux S (2011) Recent trends in the tuning of polymersomes’ membrane. Eur Phys J E 34(2):14

    Article  Google Scholar 

  4. Lee JS, Feijen J (2012) Polymersomes for drug delivery: design, formation and characterization. J Control Release 161(2):473–483

    Article  CAS  Google Scholar 

  5. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269

    Article  CAS  Google Scholar 

  6. LoPresti C, Lomas H, Massignani M, Smart T, Battaglia G (2009) Polymersomes: nature inspired nanometer sized compartments. J Mater Chem 19(22):3576–3590

    Article  CAS  Google Scholar 

  7. Meng F, Zhong Z (2011) Polymersomes spanning from nano- to microscales: advanced vehicles for controlled drug delivery and robust vesicles for virus and cell mimicking. J Phys Chem Lett 2(13):1533–1539

    Article  CAS  Google Scholar 

  8. Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W (2011) Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc Chem Res 44(10):1039–1049

    Article  CAS  Google Scholar 

  9. Zattoni A, Roda B, Borghi F, Marassi V, Reschiglian P (2013) Flow field flow fractionation for the analysis of nanoparticles used in drug delivery. J Pharm Biomed Anal under press. doi:10.1016/j.jpba.2013.08.018

  10. Bria C, Violleau F, Williams SKR (2013) Field-flow fractionation for biological, natural, and synthetic polymers: recent advances and trends. Lc Gc Asia Pac 16(4):8–16

    CAS  Google Scholar 

  11. Nilsson L (2013) Separation and characterization of food macromolecules using field-flow fractionation: a review. Food Hydrocoll 30(1):1–11

    Article  CAS  Google Scholar 

  12. von der Kammer F, Legros S, Larsen EH, Loeschner K, Hofmann T (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Anal Chem 30(3):425–436

    Article  Google Scholar 

  13. Baalousha M, Stolpe B, Lead JR (2011) Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A 1218(27):4078–4103

    Article  CAS  Google Scholar 

  14. Yohannes G, Jussila M, Hartonen K, Riekkola ML (2011) Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles. J Chromatogr A 1218(27):4104–4116

    Article  CAS  Google Scholar 

  15. Qureshi RN, Kok WT (2011) Application of flow field-flow fractionation for the characterization of macromolecules of biological interest: a review. Anal Bioanal Chem 399(4):1401–1411

    Article  CAS  Google Scholar 

  16. Rambaldi DC, Reschiglian P, Zattoni A (2011) Flow field-flow fractionation: recent trends in protein analysis. Anal Bioanal Chem 399(4):1439–1447

    Article  CAS  Google Scholar 

  17. Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, Roda A (2009) Field-flow fractionation in bioanalysis: a review of recent trends. Anal Chim Acta 635(2):132–143

    Article  CAS  Google Scholar 

  18. Reschiglian P, Moon MH (2008) Flow field-flow fractionation: a pre-analytical method for proteomics. J Proteome 71(3):265–276

    Article  CAS  Google Scholar 

  19. Fraunhofer W, Winter G (2004) The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm 58(2):369–383

    Article  CAS  Google Scholar 

  20. Pasch H, Makan AC, Chirowodza H, Ngaza N, Hiller W (2013) Analysis of complex polymers by multidetector field-flow fractionation. Anal Bioanal Chem. doi:10.1007/s00213-013-7308-0

    Google Scholar 

  21. Bednar AJ, Poda AR, Mitrano DM, Kennedy AJ, Gray EP, Ranville JF, Hayes CA, Crocker FH, Steevens JA (2013) Comparison of on-line detectors for field flow fractionation analysis of nanomaterials. Talanta 104:140–148

    Article  CAS  Google Scholar 

  22. Gigault J, Hackley VA (2013) Differentiation and characterization of isotopically modifier silver nanoparticles in aqueous media using asymmetric flow field flow fractionation coupled to optical detection and mass spectrometry. Anal Chim Acta 763:57–66

    Article  CAS  Google Scholar 

  23. Hinterwith H, Wiedmer SK, Moilanen M, Lehner A, Allmaier G, Waitz T, Lindner W, Lämmerhofer M (2013) Comparative method evaluation for size and size-distribution analysis of gold nanoparticles. J Sep Sci 36:2952–2961

    Article  Google Scholar 

  24. Loeschner K, Navratilova J, Legros S, Wagner S, Grombe R, Snell J, von der Krammer F, Larsen EH (2013) Optimization and evaluation of asymmetrical flow field-flow fractionation of silver nanoparticles. J Chromatogr A 1272:116–125

    Article  CAS  Google Scholar 

  25. Runyon JR, Goering A, Yong K-T, Ratanathanawongs W (2013) Preparation of narrow dispersity gold nanorods by asymmetrical flow field flow fractionation and investigation of surface plasmon resonance. Anal Chem 85:940–948

    Article  CAS  Google Scholar 

  26. Moon MH, Giddins JC (1993) Size distribution of liposomes by flow field-flow fractionation. J Pharm Biomed Anal 11:911–920

    Article  CAS  Google Scholar 

  27. Jahn A, Vreeland WN, DeVoes DL, Locascio LE, Gaitan M (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293

    Article  CAS  Google Scholar 

  28. Kalucerovic GN, Dietrich A, Kommera H, Kuntsche J, Mäder K, Mueller T, Paschke R (2012) Liposomes as vehicles for water insoluble platinum-based potential drug: 2-(4-(tetrahydro-2H-pyran-2-yloxy)-undecyl)-propane-1,3-diamminedichloroplatinum(II). Eur J Med Chem 54:567–572

    Article  Google Scholar 

  29. Kang DY, Kim MJ, Kim ST, Oh KS, Yuk SH, Lee S (2008) Size characterization of drug-loaded polymeric core/shell nanoparticles using asymmetrical flow field-flow fractionation. Anal Bioanal Chem 390:2183–2188

    Article  CAS  Google Scholar 

  30. Kuntsche J, Decker C, Fahr A (2012) Analysis of liposomes using asymmetrical flow field-flow fractionation: separation conditions and drug/lipid recovery. J Sep Sci 35:1993–2001

    Article  CAS  Google Scholar 

  31. Horie M, Kato H, Iwahashi H (2013) Cellular effects of manufactured nanoparticles: effect of adsorption ability of nanoparticles. Arch Toxicol. doi:10.1007/s00204-013-1033-5

    Google Scholar 

  32. Zillies JC, Zwiorek K, Winter G, Coester C (2007) Method for quantifying the PEGylation of gelatin nanoparticle drug carrier systems using asymmetrical flow field-flow fractionation and refractive index detection. Anal Chem 79:4574–4580

    Article  CAS  Google Scholar 

  33. Schädlich A, Caysa H, Mueller T, Tenambergen F, Rose C, Göpferich A, Kuntsche J, Mäder K (2011) Tumor accumulation of NIR fluorescent PEG-PLA nanoparticles: impact of particle size and human xenograft tumor model. ACS Nano 5:8710–8720

    Article  Google Scholar 

  34. Schädlich A, Rose C, Kuntsche J, Caysa H, Mueller T, Göpferich A, Mäder K (2011) How stealthy are PEG-PLA nanoparticles? An NIR in vivo study combined with detailed size measurements. Pharm Res 28(1995–2007)

  35. Ehrhart J, Mingotaud A-F, Violleau F (2011) Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ε-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. J Chromatogr A 1218:4249–4256

    Article  CAS  Google Scholar 

  36. Knop K, Mingotaud A-F, El-Akra N, Violleau F, Souchard J-P (2009) Monomeric pheophorbide(a)-containing poly(ethyleneglycol-b-ε-caprolactone)micelles for photodynamic therapy. Photochem Photobiol Sci 8:396–404

    Article  CAS  Google Scholar 

  37. Miller T, Rachel R, Besheer A, Uezguen S, Weigandt M, Göpferich A (2012) Comparative investigations on in vitro serum stability of polymeric micelle formulations. Pharm Res 29:448–459

    Article  CAS  Google Scholar 

  38. Brulet A, Lairez D, Lapp A, Cotton JP (2007) Improvement of data treatment in small-angle neutron scattering. J Appl Crystallogr 40:165–177

    Article  CAS  Google Scholar 

  39. Cotton JP (1991) In: Lindler P. Zemb T (eds) Neutron, x-ray and light scattering. North Holland, Amsterdam, p 19

  40. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973

    Article  CAS  Google Scholar 

  41. Sachl R, Stepanek M, Prochazka K, HumpolicÌŒkova J, Hof M (2007) Fluorescence study of the solvation of fluorescent probes prodan and laurdan in poly(caprolactone)-block-poly(ethylene oxide) vesicles in aqueous solutions with tetrahydrofurane. Langmuir 24(1):288–295

    Article  Google Scholar 

  42. Sachl R, Uchman M, Matejicek P, Prochazka K, Stepanek M, Spirkova M (2007) Preparation and characterization of self-assembled nanoparticles formed by poly(ethylene oxide)-block-poly(Îμ-caprolactone) copolymers with long poly(caprolactone) blocks in aqueous solutions. Langmuir 23(6):3395–3400

    Article  CAS  Google Scholar 

  43. Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 3(2):181–194

    Article  CAS  Google Scholar 

  44. Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E (2011) The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22:115101

    Article  Google Scholar 

  45. Gayet F, Marty J-D, Brulet A (2011) Vesicles in ionic liquids. Langmuir 27(16):9706–9710

    Article  CAS  Google Scholar 

  46. Hocine S, Cui D, Rager M-N, Di Cicco A, Liu J-M, Wdzieczak-Bakala J, Brulet A (2013) Polymersomes with PEG corona: structural changes and controlled release induced by temperature variation. Langmuir 29(5):1356–1369

    Article  CAS  Google Scholar 

  47. Salva R, Le Meins J-F, Sandre O, Brulet A, Schmutz M, Guenoun P, Lecommandoux S (2013) Polymersome shape transformation at the nanoscale. ACS Nano 7(10):9298–9311

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the French ANR (ANR COPOPDT), PRES Toulouse and Midi-Pyrénées Region for funding and PhD grant for U. Till. EU (FEDER-35477: Nano-objets pour la biotechnologie) is greatly acknowledged for financial support (AFM instrument). LLB is thanked for beam time access and Annie Brûlet for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne-Françoise Mingotaud or Frédéric Violleau.

Additional information

Published in the topical collection Field- and Flow-based Separations with guest editors Gaetane Lespes, Catia Contado, and Bruce Gale.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Till, U., Gaucher-Delmas, M., Saint-Aguet, P. et al. Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques. Anal Bioanal Chem 406, 7841–7853 (2014). https://doi.org/10.1007/s00216-014-7891-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7891-8

Keywords

Navigation