Skip to main content

Advertisement

Log in

The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Organic carbon (OC) and elemental carbon (EC) together constitute a substantial proportion of airborne particulate matter (PM). Insight into the sources of this major contributor to PM is important for policies to mitigate the impact of PM on human health and climate change. In recent years measurement of the abundance of the radioisotope of carbon (14C) in samples of PM by accelerator mass spectrometry has been used to help quantify the relative contributions from sources of fossil carbon and contemporary carbon. This review provides an introduction to the different sources of carbon within PM and the role of 14C measurements, a description of the preparation of PM samples and of the instrumentation used to quantify 14C, and a summary of the results and source apportionment methods reported in published studies since 2004. All studies report a sizable fraction of the carbonaceous PM as of non-fossil origin. Even for PM collected in urban locations, the proportions of non-fossil carbon generally exceed 30 %; typically the proportion in urban background locations is around 40-60 % depending on the local influence of biomass burning. Where values have been measured directly, proportions of non-fossil carbon in EC are lower than in OC, reflecting the greater contribution of fossil-fuel combustion to EC and the generally small sources of contemporary EC. Detailed source apportionment studies point to important contributions from biogenic-derived secondary OC, consistent with other evidence of a ubiquitous presence of heavily oxidized background secondary OC. The review concludes with some comments on current issues and future prospects, including progress towards compound-class and individual-compound-specific 14C analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMS:

Accelerator mass spectrometry

BVOC:

Biogenic volatile organic compound

EC:

Elemental carbon

NIST:

National Institute of Standards and Technology

OC:

Organic carbon

OM:

Organic matter

PAH:

Polycyclic aromatic hydrocarbon

PM:

Particulate matter

PM2.5 :

Particulate matter consisting of particles with an aerodynamic diameter smaller than 2.5 μm

PM10 :

Particulate matter consisting of particles with an aerodynamic diameter smaller than 10 μm

pMC:

Percent modern carbon

POC:

Primary organic carbon

SOA:

Secondary organic aerosol

SOC:

Secondary organic carbon

SRM:

Standard Reference Material

TC:

Total carbon

VOC:

Volatile organic compound

WHO:

World Health Organization

WINSOC:

Water-insoluble organic carbon

WSOC:

Water-soluble organic carbon

References

  1. Poschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540

    Article  Google Scholar 

  2. Colbeck I (2008) Environmental chemistry of aerosols. Blackwell, Oxford

    Book  Google Scholar 

  3. Intergovernmental Panel on Climate Change (2007) Intergovernmental Panel on Climate Change fourth assessment report: climate change 2007. Intergovernmental Panel on Climate Change, Geneva

    Book  Google Scholar 

  4. World Health Organization (2006) Air quality guidelines. Global update 2005. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. World Health Organization Regional Office for Europe, Copenhagen. http://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf

  5. World Health Organization (2013) Review of evidence on health aspects of air pollution – REVIHAAP Project: technical report. 2013. World Health Organization Regional Office for Europe, Copenhagen. http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf

  6. Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M, Henderson SB, Krzyzanowski M, Martin RV, Van Dingenen R, van Donkelaar A, Thurston GD (2011) Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 46:652–660

    Article  Google Scholar 

  7. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT-A, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FG, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD III, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH, Khatibzadeh S, Khoo JP, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Hanafiah KM, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CD, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA III, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJ, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJ, Ezzati M (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990−2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260

    Article  Google Scholar 

  8. Heal MR, Kumar P, Harrison RM (2012) Particles, air quality, policy and health. Chem Soc Rev 41:6606–6630

    Article  CAS  Google Scholar 

  9. Putaud JP, Raes F, Van Dingenen R, Bruggemann E, Facchini MC, Decesari S, Fuzzi S, Gehrig R, Huglin C, Laj P, Lorbeer G, Maenhaut W, Mihalopoulos N, Mulller K, Querol X, Rodriguez S, Schneider J, Spindler G, ten Brink H, Torseth K, Wiedensohler A (2004) European aerosol phenomenology-2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2579–2595

    Article  CAS  Google Scholar 

  10. Air Quality Expert Group (2005) Particulate matter in the United Kingdom. Second report of the Air Quality Expert Group. Department for Environment, Food and Rural Affairs, London. http://www.defra.gov.uk/environment/quality/air/air-quality/committees/aqeg/publish/

  11. Environmental Protection Agency (2009) Integrated science assessment for particulate matter. EPA/600/R-08/139F. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=216546. 2009

  12. Putaud J, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, Flentje H, Fuzzi S, Gehrig R, Hansson H, Harrison R, Herrmann H, Hitzenberger R, Hueglin C, Jones A, Kasper-Giebl A, Kiss G, Kousa A, Kuhlbusch T, Loeschau G, Maenhaut W, Molnar A, Moreno T, Pekkanen J, Perrino C, Pitz M, Puxbaum H, Querol X, Rodriguez S, Salma I, Schwarz J, Smolik J, Schneider J, Spindler G, ten Brink H, Tursic J, Viana M, Wiedensohler A, Raes F (2010) A European aerosol phenomenology-3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos Environ 44:1308–1320

    Article  CAS  Google Scholar 

  13. Air Quality Expert Group (2012) Fine particulate matter (PM2.5) in the United Kingdom. Department for Environment, Food and Rural Affairs, London. http://uk-air.defra.gov.uk/library/reports?report_id=727

  14. Gelencser A (2005) Carbonaceous aerosol. Springer, Dordrecht

    Google Scholar 

  15. Fuzzi S, Andreae MO, Huebert BJ, Kulmala M, Bond TC, Boy M, Doherty SJ, Guenther A, Kanakidou M, Kawamura K, Kerminen VM, Lohmann U, Russell LM, Poschl U (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos Chem Phys 6:2017–2038

    Article  CAS  Google Scholar 

  16. Graber ER, Rudich Y (2006) Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos Chem Phys 6:729–753

    Article  CAS  Google Scholar 

  17. Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel T, Monod A, Prévôt ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5235

    Article  CAS  Google Scholar 

  18. Jimenez J, Canagaratna M, Donahue N, Prevot A, Zhang Q, Kroll J, DeCarlo P, Allan J, Coe H, Ng N, Aiken A, Docherty K, Ulbrich I, Grieshop A, Robinson A, Duplissy J, Smith J, Wilson K, Lanz V, Hueglin C, Sun Y, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson J, Collins D, Cubison M, Dunlea E, Huffman JA, Onasch TB, Alfarra MR, Williams PI, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun JY, Zhang YM, Dzepina K, Kimmel JR, Sueper D, Jayne JT, Herndon SC, Trimborn AM, Williams LR, Wood EC, Middlebrook AM, Kolb CE, Baltensperger U, Worsnop DR (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529

    Article  CAS  Google Scholar 

  19. Chow JC, Watson JG, Chen LWA, Arnott WP, Moosmuller H (2004) Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ Sci Technol 38:4414–4422

    Article  CAS  Google Scholar 

  20. Chow JC, Yu JZ, Watson JG, Ho SSH, Bohannan TL, Hays MD, Fung KK (2007) The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review. J Environ Sci Health 42:1521–1541

    CAS  Google Scholar 

  21. Cavalli F, Viana M, Yttri KE, Genberg J, Putaud JP (2010) Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos Meas Technol 3:79–89

    Article  CAS  Google Scholar 

  22. Godwin H (1962) Half-life of radiocarbon. Nature 195:984

    Article  CAS  Google Scholar 

  23. Szidat S, Jenk TM, Gaggeler HW, Synal HA, Fisseha R, Baltensperger U, Kalberer M, Samburova V, Wacker L, Saurer M, Schwikowski M, Hajdas I (2004) Source apportionment of aerosols by C-14 measurements in different carbonaceous particle fractions. Radiocarbon 46:475–484

    CAS  Google Scholar 

  24. Szidat S, Jenk TM, Gaggeler HW, Synal HA, Hajdas I, Bonani G, Saurer M (2004) THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (C-14) in the environment. Nucl Instrum Meth B 223–24:829–836

    Article  Google Scholar 

  25. Jordan TB, Seen AJ, Jacobsen GE, Gras JL (2006) Radiocarbon determination of woodsmoke contribution to air particulate matter in Launceston, Tasmania. Atmos Environ 40:2575–2582

    Article  CAS  Google Scholar 

  26. Huang J, Kang S, Shen C, Cong Z, Liu K, Wang W, Liu L (2010) Seasonal variations and sources of ambient fossil and biogenic-derived carbonaceous aerosols based on 14C measurements in Lhasa, Tibet. Atmos Res 96:553–559

    Google Scholar 

  27. Heal MR, Naysmith P, Cook GT, Xu S, Raventos Duran T, Harrison RM (2011) Application of 14C analyses to source apportionment of carbonaceous PM2.5 in the UK. Atmos Environ 45:2341–2348

    Google Scholar 

  28. Xu XM, Trumbore SE, Zheng SH, Southon JR, McDuffee KE, Luttgen M, Liu JC (2007) Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nucl Instrum Meth B 259:320–329

    Article  CAS  Google Scholar 

  29. Litherland A, Zhao XL, Kieser W (2011) Mass spectrometry with accelerators. Mass Spectrom Rev 30:1037–1072

    Article  CAS  Google Scholar 

  30. Hua Q, Barbetti M (2004) Review of tropospheric bomb C-14 data for carbon cycle modeling and age calibration purposes. Radiocarbon 46:1273–1298

    CAS  Google Scholar 

  31. Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, Gomez-Pelaez AJ, Steele L, Wagenbach D, Weller R, Worthy DE (2010) Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B 62:26–46

    Article  Google Scholar 

  32. Bench G (2004) Measurement of contemporary and fossil carbon contents of PM2.5 aerosols: results from Turtleback Dome, Yosemite National Park. Environ Sci Technol 38:2424–2427

    Google Scholar 

  33. Bench G, Fallon S, Schichtel B, Malm W, McDade C (2007) Relative contributions of fossil and contemporary carbon sources to PM2.5 aerosols at nine Interagency Monitoring for Protection of Visual Environments (IMPROVE) network sites. J Geophys Res 112, D10205

  34. Lewis CW, Klouda GA, Ellenson WD (2004) Radiocarbon measurement of the biogenic contribution to summertime PM-2.5 ambient aerosol in Nashville, TN. Atmos Environ 38:6053–6061

    Google Scholar 

  35. Szidat S, Jenk TM, Synal HA, Kalberer M, Wacker L, Hajdas I, Kasper-Giebl A, Baltensperger U (2006) Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by 14C. J Geophys Res 111, D07206

    Article  Google Scholar 

  36. Szidat S, Ruff M, Perron N, Wacker L, Synal HA, Hallquist M, Shannigrahi AS, Yttri KE, Dye C, Simpson D (2009) Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Göteborg, Sweden. Atmos Chem Phys 9:1521–1535

    Article  CAS  Google Scholar 

  37. Gilardoni S, Vignati E, Cavalli F, Putaud JP, Larsen BR, Karl M, Stenström K, Genberg J, Henne S, Dentener F (2011) Better constraints on sources of carbonaceous aerosols using a combined 14C - macro tracer analysis in a European rural background site. Atmos Chem Phys 11:5685–5700

    Google Scholar 

  38. Genberg J, Hyder M, Stenström K, Bergström RW, Simpson D, Fors EO, Jönsson JA, Swietlicki E (2011) Source apportionment of carbonaceous aerosol in southern Sweden. Atmos Chem Phys 11:11387–11400

    Article  CAS  Google Scholar 

  39. Minguillón MC, Perron N, Querol X, Szidat S, Fahrni SM, Alastuey A, Jimenez JL, Mohr C, Ortega AM, Day DA, Lanz VA, Wacker L, Reche C, Cusack M, Amato F, Kiss G, Hoffer A, Decesari S, Moretti F, Hillamo R, Teinilä K, Seco R, Peñuelas J, Metzger A, Schallhart S, Müller M, Hansel A, Burkhart JF, Baltensperger U, Prévôt ASH (2011) Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in northeast Spain. Atmos Chem Phys 11:12067–12084

    Article  Google Scholar 

  40. Dusek U, ten Brink HM, Meijer HAJ, Kos G, Mrozek D, Röckmann T, Holzinger R, Weijers EP (2013) The contribution of fossil sources to the organic aerosol in the Netherlands. Atmos Environ 74:169–176

    Article  CAS  Google Scholar 

  41. Gelencser A, May B, Simpson D, Sanchez-Ochoa A, Kasper-Giebl A, Puxbaum H, Caseiro A, Pio C, Legrand M (2007) Source apportionment of PM2.5 organic aerosol over Europe: primary/secondary, natural/anthropogenic, and fossil/biogenic origin. J Geophys Res 112, D23S04

    Article  Google Scholar 

  42. Birch ME, Cary RA (1996) Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: methodology and exposure issues. Analyst 121:1183–1190

    Article  CAS  Google Scholar 

  43. Szidat S, Jenk TM, Gaggeler HW, Synal HA, Fisseha R, Baltensperger U, Kalberer M, Samburova V, Reimann S, Kasper-Giebl A, Hajdas I (2004) Radiocarbon (C-14)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zurich, Switzerland. Atmos Environ 38:4035–4044

    Article  CAS  Google Scholar 

  44. Zhang YL, Perron N, Ciobanu VG, Zotter P, Minguillón MC, Wacker L, Prévôt ASH, Baltensperger U, Szidat S (2012) On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols. Atmos Chem Phys 12:10841–10856

    Article  CAS  Google Scholar 

  45. Bernardoni V, Calzolai G, Chiari M, Fedi M, Lucarelli F, Nava S, Piazzalunga A, Riccobono F, Taccetti F, Valli G, Vecchi R (2013) Radiocarbon analysis on organic and elemental carbon in aerosol samples and source apportionment at an urban site in northern Italy. J Aerosol Sci 56:88–99

    Article  CAS  Google Scholar 

  46. Currie LA, Benner BA, Kessler JD, Klinedinst DB, Klouda GA, Marolf JV, Slater JF, Wise SA, Cachier H, Cary R, Chow JC, Watson J, Druffel ERM, Masiello CA, Eglinton TI, Pearson A, Reddy CM, Gustafsson Ö, Quinn JG, Hartmann PC, Hedges JI, Prentice KM, Kirchstetter TW, Novakov T, Puxbaum H, Schmid H (2002) A critical evaluation of interlaboratory data on total, elemental, and isotopic carbon in the carbonaceous particle reference material, NIST SRM 1649a. J Res Natl Inst Stand Technol 107:279–298

    Article  Google Scholar 

  47. National Institute of Standards and Technology (1998) Certificate of analysis for Standard Reference Material 1649a, urban dust. National Institute of Standards andTechnology, Gaithersburg

    Google Scholar 

  48. National Institute of Standards and Technology (2001) Certificate of analysis for Standard Reference Material 1649a, urban dust. Revised certificate. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  49. National Institute of Standards and Technology (2007) Certificate of analysis for Standard Reference Material 1649a, urban dust. Revised certificate. 2007. https://www-s.nist.gov/srmors/view_cert.cfm?srm=1649A

  50. Klouda GA, Filliben JJ, Parish HJ, Chow JJ, Watson JG, Cary RA (2005) Reference material 8785: air particulate matter on filter media. Aerosol Sci Technol 39:173–183

    Article  Google Scholar 

  51. National Institute of Standards and Technology (2005) Report of investigation for reference material 8785, air particulate matter on filter media. https://srmors.nist.gov/view_report.cfm?srm=8785

  52. Chow JC, Watson JG, Crow D, Lowenthal DH, Merrifield T (2001) Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci Technol 34:23–34

    CAS  Google Scholar 

  53. Yamamoto N, Muramoto A, Yoshinaga J, Shibata K, Endo M, Endo O, Hirabayashi M, Tanabe K, Goto S, Yoneda M, Shibata Y (2007) Comparison of carbonaceous aerosols in Tokyo before and after implementation of diesel exhaust restrictions. Environ Sci Technol 41:6357–6362

    Article  CAS  Google Scholar 

  54. Fushimi A, Wagai R, Uchida M, Hasegawa S, Takahashi K, Kondo M, Hirabayashi M, Morino Y, Shibata Y, Ohara T, Kobayashi S, Tanabe K (2011) Radiocarbon (14C) diurnal variations in fine particles at sites downwind from Tokyo, Japan in summer. Environ Sci Technol 45:6784–6792

    Article  CAS  Google Scholar 

  55. Sun X, Hu M, Guo S, Liu K, Zhou L (2012) C-14-Based source assessment of carbonaceous aerosols at a rural site. Atmos Environ 50:36–40

    Article  CAS  Google Scholar 

  56. Glasius M, la Cour A, Lohse C (2011) Fossil and nonfossil carbon in fine particulate matter: a study of five European cities. J Geophys Res 116, D11302

    Article  Google Scholar 

  57. Schichtel BA, Malm WC, Bench G, Fallon S, Mcdade CE, Chow JC, Watson JG (2008) Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States. J Geophys Res 113, D02311

    Article  Google Scholar 

  58. Harrison RM, Yin JX (2008) Sources and processes affecting carbonaceous aerosol in central England. Atmos Environ 42:1413–1423

    Article  CAS  Google Scholar 

  59. Pio C, Cerqueira M, Harrison RM, Nunes T, Mirante F, Alves C, Oliveira C, Sanchez de la Campa A, Artíñano B, Matos M (2011) OC/EC ratio observations in Europe: re-thinking the approach for apportionment between primary and secondary organic carbon. Atmos Environ 45:6121–6132

    Article  CAS  Google Scholar 

  60. Yttri KE, Simpson D, Nøjgaard JK, Kristensen K, Genberg J, Stenström K, Swietlicki E, Hillamo R, Aurela M, Bauer H, Offenberg JH, Jaoui M, Dye C, Eckhardt S, Burkhart JF, Stohl A, Glasius M (2011) Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites. Atmos Chem Phys 11:13339–13357

    Article  CAS  Google Scholar 

  61. Yttri KE, Simpson D, Stenström K, Puxbaum H, Svendby T (2011) Source apportionment of the carbonaceous aerosol in Norway - quantitative estimates based on 14C, thermal-optical and organic tracer analysis. Atmos Chem Phys 11:9375–9394

    Google Scholar 

  62. Harrison RM, Jones AM, Lawrence RG (2003) A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites. Atmos Environ 37:4927–4933

    Article  CAS  Google Scholar 

  63. Aiken AC, DeCarlo PF, Kroll JH, Worsnop DR, Huffman JA, Docherty KS, Ulbrich IM, Mohr C, Kimmel JR, Sueper D, Sun Y, Zhang Q, Trimborn A, Northway M, Ziemann PJ, Canagaratna MR, Onasch TB, Alfarra MR, Prévôt ASH, Dommen J, Duplissy J, Metzger A, Baltensperger U, Jimenez JL (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ Sci Technol 42:4478–4485

    Article  CAS  Google Scholar 

  64. Polidori A, Turpin BJ, Davidson CI, Rodenburg LA, Maimone F (2008) Organic PM2.5: Fractionation by polarity, FTIR spectroscopy, and OM/OC ratio for the Pittsburgh aerosol. Aerosol Sci Technol 42:233–246

    Google Scholar 

  65. El Zanan HS, Zielinska B, Mazzoleni LR, Hansen DA (2009) Analytical determination of the aerosol organic mass-to-organic carbon ratio. J Air Waste Manage Assoc 59:58–69

    Article  Google Scholar 

  66. Chan TW, Huang L, Leaitch WR, Sharma S, Brook JR, Slowik JG, Abbatt JPD, Brickell PC, Liggio J, Li SM, Moosmuller H (2010) Observations of OM/OC and specific attenuation coefficients (SAC) in ambient fine PM at a rural site in central Ontario, Canada. Atmos Chem Phys 10:2393–2411

    Article  CAS  Google Scholar 

  67. Simon H, Bhave PV, Swall JL, Frank NH, Malm WC (2011) Determining the spatial and seasonal variability in OM/OC ratios across the US using multiple regression. Atmos Chem Phys 11:2933–2944

    Article  CAS  Google Scholar 

  68. Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, Ulbrich I, Alfarra MR, Takami A, Middlebrook AM, Sun YL, Dzepina K, Dunlea E, Docherty K, DeCarlo PF, Salcedo D, Onasch T, Jayne JT, Miyoshi T, Shimono A, Hatakeyama S, Takegawa N, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Williams P, Bower K, Bahreini R, Cottrell L, Griffin RJ, Rautiainen J, Sun JY, Zhang YM, Worsnop DR (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys Res Lett 34, L13801

    Article  Google Scholar 

  69. Buchholz BA, Fallon SJ, Zermeño P, Bench G, Schichtel BA (2013) Anomalous elevated radiocarbon measurements of PM2.5. Nucl Instrum Meth B 294:631–635

    Article  CAS  Google Scholar 

  70. Xu S, Dougans A, Freeman SPHT, Maden C, Loger R (2007) A gas ion source for radiocarbon measurement at SUERC. Nucl Instrum Meth B 259:76–82

    Article  CAS  Google Scholar 

  71. Andreae MO, Gelencser A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    Article  CAS  Google Scholar 

  72. Hodzic A, Jimenez JL, Prévôt ASH, Szidat S, Fast JD, Madronich S (2010) Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City? Atmos Chem Phys 10:10997–11016

    Article  CAS  Google Scholar 

  73. Zheng M, Fang M, Wang F, To KL (2000) Characterization of the solvent extractable organic compounds in PM2.5 aerosols in Hong Kong. Atmos Environ 34:2691–2702

    Google Scholar 

  74. Alves C, Vicente A, Pio C, Kiss G, Hoffer A, Decesari S, Prevot AS, Cruz Minguillon M, Querol X, Hillamo R, Spindler G, Swietlicki E (2012) Organic compounds in aerosols from selected European sites - biogenic versus anthropogenic sources. Atmos Environ 59:243–255

    Article  CAS  Google Scholar 

  75. Mandalakis M, Gustafsson Ö, Alsberg T, Egeback AL, Reddy CM, Xu L, Klanova J, Holoubek I, Stephanou EG (2005) Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites. Environ Sci Technol 39:2976–2982

    Article  CAS  Google Scholar 

  76. Zencak Z, Klanova J, Holoubek I, Gustafsson Ö (2007) Source apportionment of atmospheric PAHs in the western Balkans by natural abundance radiocarbon analysis. Environ Sci Technol 41:3850–3855

    Article  CAS  Google Scholar 

  77. Kumata H, Uchida M, Sakuma E, Uchida T, Fujiwara K, Tsuzuki M, Yoneda M, Shibata Y (2006) Compound class specific 14C analysis of polycyclic aromatic hydrocarbons associated with PM10 and PM1.1 aerosols from residential areas of suburban Tokyo. Environ Sci Technol 40:3474–3480

    Google Scholar 

  78. Xu L, Zheng M, Ding X, Edgerton ES, Reddy CM (2012) Modern and fossil contributions to polycyclic aromatic hydrocarbons in PM2.5 from North Birmingham, Alabama in the southeastern U.S. Environ Sci Technol 46:1422–1429

    Google Scholar 

  79. Sheesley RJ, Kruså M, Krecl P, Johansson C, Gustafsson Ö (2009) Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis. Atmos Chem Phys 9:3347–3356

    Article  CAS  Google Scholar 

  80. Endo M, Yamamoto N, Yoshinaga J, Yanagisawa Y, Endo O, Goto S, Yoneda M, Shibata Y, Morita M (2004) C-14 measurement for size-fractionated airborne particulate matters. Atmos Environ 38:6263–6267

    Article  CAS  Google Scholar 

  81. Zencak Z, Elmquist M, Gustafsson O (2007) Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method. Atmos Environ 41:7895–7906

    Article  CAS  Google Scholar 

  82. Gustafsson Ö, Kruså M, Zencak Z, Sheesley RJ, Granat L, Engstrom E, Praveen PS, Rao PSP, Leck C, Rodhe H (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323:495–498

    Article  CAS  Google Scholar 

  83. Andersson A, Sheesley RJ, Kruså M, Johansson C, Gustafsson Ö (2011) 14C-based source assessment of soot aerosols in Stockholm and the Swedish EMEP-Aspvreten regional background site. Atmos Environ 45:215–222

    Article  CAS  Google Scholar 

  84. El Haddad I, Marchand N, Wortham H, Piot C, Besombes JL, Cozic J, Chauvel C, Armengaud A, Robin D, Jaffrezo JL (2011) Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille. Atmos Chem Phys 11:2039–2958

    Google Scholar 

  85. El Haddad I, Marchand N, Temime-Roussel B, Wortham H, Piot C, Besombes JL, Baduel C, Voisin D, Armengaud A, Jaffrezo JL (2011) Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille. Atmos Chem Phys 11:2059–2079

    Article  Google Scholar 

  86. Ceburnis D, Garbaras A, Szidat S, Rinaldi M, Fahrni S, Perron N, Wacker L, Leinert S, Remeikis V, Facchini MC, Prévôt ASH, Jennings SG, Ramonet M, O'Dowd CD (2011) Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis. Atmos Chem Phys 11:8593–8606

    Article  CAS  Google Scholar 

  87. Minoura H, Morikawa T, Mizohata A, Sakamoto K (2012) Carbonaceous aerosol and its characteristics observed in Tokyo and south Kanto region. Atmos Environ 61:605–613

    Article  CAS  Google Scholar 

  88. Yin J, Harrison RM, Chen Q, Rutter A, Schauer JJ (2010) Source apportionment of fine particles at urban background and rural sites in the UK atmosphere. Atmos Environ 44:841–851

    Article  CAS  Google Scholar 

  89. Levin I, Hammer S, Kromer B, Meinhardt F (2008) Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci Total Environ 391:211–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew R. Heal.

Additional information

Published in the special paper collection Analytical Chemistry Related to Climate Change and Environmental Sustainability with guest editors Richard J. C. Brown and Carlos A. Gonzalez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heal, M.R. The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review. Anal Bioanal Chem 406, 81–98 (2014). https://doi.org/10.1007/s00216-013-7404-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7404-1

Keywords

Navigation