Skip to main content
Log in

Acebutolol and alprenolol metabolism predictions: comparative study of electrochemical and cytochrome P450-catalyzed reactions using liquid chromatography coupled to high-resolution mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A comparative study of the electrochemical conversion and the biotransformation performed by the cytochrome P450 (CYP450) obtained by rat liver microsomes has been achieved to elucidate the oxidation mechanism of both acebutolol and alprenolol. For this purpose, a wide range of reactions such as N-dealkylation, O-dealkoxylation, aromatic hydroxylation, benzyl hydroxylation, alkyl hydroxylation, and aromatic hydroxylation have been examined in this study, and their mechanisms have been compared. Most of the results of the electrochemical oxidation have been found to be in accordance with those obtained by incubating acebutolol and alprenolol in the presence of CYP450, i.e., N-dealkylation, benzyl hydroxylation, and O-dealkoxylation reactions catalyzed by liver microsomes were found to be predicted by the electrochemical oxidation. The difficulty for the electrochemical process to mimic both aromatic and alkyl hydroxylation reactions has also been discussed, and the hypothesis for the absence of aromatic hydroxylated and alkyl hydroxylated products, respectively, for alprenolol and acebutolol, under the anodic oxidation has been supported by theoretical calculation. The present study highlights the potential and limitation of coupling of electrochemistry–liquid chromatography–high-resolution mass spectrometry for the study of phase I and phase II reactions of acebutolol and alprenolol.

The electrochemical conversion versus the biotransformation catalyzed by CYP450

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM (2003) Toxicol Appl Pharm 189(3):233–246

    Article  CAS  Google Scholar 

  2. Li AP (2001) Drug Discov Today 6:357–366

    Article  CAS  Google Scholar 

  3. Jahn S, Faber H, Zazzeroni R, Karst U (2012) Rapid Commun Mass Spectrom 26:1415–1425

    Article  CAS  Google Scholar 

  4. Cavalieri EL, Rogan EG, Devanesan PD, Cremonesi P, Cerny RL, Gross ML, Bodell WJ (1990) Biochemistry 29:4820–4827

    Article  CAS  Google Scholar 

  5. Jurva U, Holmen A, Groenberg G, Masimirembwa C, Weidolf L (2008) Chem Res Toxicol 21(4):928–935

    Article  CAS  Google Scholar 

  6. Waldon DJ, Teffera Y, Colletti AE, Liu J-Z, Zurcher D, Copeland KW, Zhao Z-Y (2011) Chem Res Toxicol 23(12):1947–1953

    Article  Google Scholar 

  7. Ma S, Subramanian R (2006) J Mass Spectrom 41(9):1121–1139

    Article  CAS  Google Scholar 

  8. Faber H, Jahn S, Kunnemeyer J, Simon H, Melles D, Vogel M, Karst U (2011) Angew Chem 50(37):A52–A58

    Google Scholar 

  9. Madsen KG, Skonberg C, Jurva U, Cornett C, Hansen SH, Johansen TN, Olsen J (2008) Chem Res Toxicol 21(5):1107–1119

    Article  CAS  Google Scholar 

  10. Jurva U, Wikstrom HV, Weidolf L, Bruins AP (2003) Rapid Commun Mass Spectrom 17(8):800–810

    Article  CAS  Google Scholar 

  11. Shono T, Toda T, Oshino N (1982) J Am Chem Soc 104(9):2639–2641

    Article  CAS  Google Scholar 

  12. Shono T, Toda T, Oshino N (1981) Drug Metab Dispos 9:481–482

    CAS  Google Scholar 

  13. Johansson T, Weidolf L, Castagnoli JN, Jurva U (2010) Rapid Commun Mass Spectrom 24(9):1231–1240

    Article  Google Scholar 

  14. Nouri-Nigjeh E, Bischoff R, Bruins AP, Permentier HP (2011) Curr Drug Metab 12(4):359–371

    Article  CAS  Google Scholar 

  15. Jahn S, Karst U (2012) J Chromatogr A 1259:16–49

    Article  CAS  Google Scholar 

  16. Jahn S, Baumann A, Roscher J, Hense K, Zazzeroni R, Karst U (2011) J Chromatogr A 1218:9210–9220

    Article  CAS  Google Scholar 

  17. Hoffmann T, Hofmann D, Klumpp E, Kuppers S (2011) Anal Bioanal Chem 399:1859–1868

    Article  CAS  Google Scholar 

  18. Lohmann W, Doetzer R, Guetter G, Van LSM, Karst U (2009) J Am Soc Mass Spectrom 20(1):138–145

    Article  CAS  Google Scholar 

  19. Andresen BD, Davis FT (1979) Drug Metab Dispos 79(6):360–365

    Google Scholar 

  20. Hoffmann KJ, Arfwidsson A, Borg KO, Skanberg I (1979) Xenobiotica 9:93–106

    Article  CAS  Google Scholar 

  21. Kremers PBP, Cresteil T, de Graeve J, Columelli S, Leroux JP, Gielen JE (1981) Eur J Biochem 118(3):599–606

    Article  CAS  Google Scholar 

  22. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) Rapid Commun Mass Spectrom 20:1989–1994

    Article  CAS  Google Scholar 

  23. Bateman KP, Castro-Perez J, Wrona M, Shockcor JP, Yu K, Oballa R, Nicoll-Griffith DA (2007) Rapid Commun Mass Spectrom 21:1485–1496

    Article  CAS  Google Scholar 

  24. Bussy U, Tea I, Ferchaud-Roucher V, Krempf M, Silvestre V, Galland N, Jacquemin D, Andresen-Bergström M, Jurva U, Boujtita M (2013) Anal Chim Acta 762:39–46

    Article  CAS  Google Scholar 

  25. Frisch MJ (2009) Gaussian 09 Revision A02. Gaussian Inc, Wallingford

    Google Scholar 

  26. Boese AD, Martin JML (2004) J Chem Phys 121(8):3405–3416

    Article  CAS  Google Scholar 

  27. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113(18):6378–6396

    Article  CAS  Google Scholar 

  28. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  29. Geerlings P, De PF, Langenaeker W (2003) Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  30. Bussy U, Ferchaud-Roucher V, Tea I, Krempf M, Silvestre V, Boujtita M (2012) Electrochim Acta 69:351–357

    Article  CAS  Google Scholar 

  31. Nassar AEF, Adams PE (2003) Curr Drug Metab 4:259–271

    Article  CAS  Google Scholar 

  32. Johansson T, Weidolf L, Jurva U (2007) Rapid Commun Mass Spectrom 21(14):2323–2331

    Article  CAS  Google Scholar 

  33. Hinson JA, Nelson SD, Mitchell JR (1977) Mol Pharmacol 13(4):625–633

    CAS  Google Scholar 

  34. Hinson JA, Nelson SD, Gillette JR (1979) Mol Pharmacol 15(2):419–427

    CAS  Google Scholar 

  35. Yun CH, Miller GP, Guengerich FP (2001) Biochemistry 40:4521–4530

    Article  CAS  Google Scholar 

  36. Guengerich FP (2001) Chem Res Toxicol 14(6):611–650

    Article  CAS  Google Scholar 

  37. Guengerich FP, Yun C-H, Macdonald TL (1996) J Biol Chem 271:27321–27329

    Article  CAS  Google Scholar 

  38. Meunier B, De VSP, Shaik S (2004) Chem Rev 104(9):3947–3980

    Article  CAS  Google Scholar 

  39. Lohmann W, Karst U (2009) Anal Bioanal Chem 394(5):1341–1348

    Article  CAS  Google Scholar 

  40. Van Leeuwen SM, Blankert B, Kauffmann J-M, Karst U (2005) Anal Bioanal Chem 382(3):742–750

    Article  Google Scholar 

  41. Anzenbacher P, Niwa T, Tolbert LM, Sirimanne SR, Guengerich FP (1996) Biochemistry 35(8):2512–2520

    Article  CAS  Google Scholar 

  42. Glowka ML, Codding PW (1989) Acta Crystallogr Sect C: Cryst Struct Commun C45:902–906

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNRS, the University of Nantes, and the French Ministry of Higher Education and Research for financial support. D.J. acknowledges the European Research Council (ERC) and the Région des Pays de la Loire for financial support in the framework of a Starting Grant (Marches–278845) and a recrutement sur poste stratégique, respectively. This research used resources of (1) the GENCI-CINES/IDRIS (grant c2012085117), (2) Centre de Calcul Intensif des Pays de Loire (CCIPL), and (3) a local Troy cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Boujtita.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussy, U., Delaforge, M., El-Bekkali, C. et al. Acebutolol and alprenolol metabolism predictions: comparative study of electrochemical and cytochrome P450-catalyzed reactions using liquid chromatography coupled to high-resolution mass spectrometry. Anal Bioanal Chem 405, 6077–6085 (2013). https://doi.org/10.1007/s00216-013-7050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7050-7

Keywords

Navigation