Skip to main content
Log in

Inkjet printed (bio)chemical sensing devices

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Inkjet printing has evolved from an office printing application to become an important tool in industrial mass fabrication. In parallel, this technology is increasingly used in research laboratories around the world for the fabrication of entire (bio)chemical sensing devices or single functional elements of such devices. Regularly stated characteristics of inkjet printing making it attractive to replace an alternative material deposition method are low cost, simplicity, high resolution, speed, reproducibility, flexibility, non-contact, and low amount of waste generated. With this review, we give an overview over areas of (bio)chemical sensing device development profiting from inkjet printing applications. A variety of printable functional sensor elements are introduced by examples, and the advantages and challenges of the inkjet method are pointed out. It is demonstrated that inkjet printing is already a routine tool for the fabrication of some (bio)chemical sensing devices, but also that novel applications are being continuously developed. Finally, some inherent limitations of the method and challenges for the further exploitation of this technology are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

DBSA:

Dodecylbenzenesulfonic acid

DOD:

Drop-on-demand

HRP:

Horseradish peroxidase

LbL:

Layer-by-layer

LED:

Light emitting diode

LOD:

Limit of detection

ODF:

Oligodeoxyfluoroside

PANI:

Polyaniline

PEDOT-PSS:

Poly(3,4-ethylene dioxythiophene)-poly(styrenesulfonate)

SERS:

Surface enhanced Raman scattering

References

  1. Kimura J, Kawana Y, Kuriyama T (1988) An immobilized enzyme membrane fabrication method using an ink jet nozzle. Biosensors 4:41–52

    Article  Google Scholar 

  2. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:212–2126

    Article  Google Scholar 

  3. Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13:3299–3305

    Article  CAS  Google Scholar 

  4. De Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: State of the art and future developments. Adv Mater 16:203–213

    Article  CAS  Google Scholar 

  5. Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703–713

    Article  CAS  Google Scholar 

  6. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing—process and its applications. Adv Mater 22:673–685

    Article  CAS  Google Scholar 

  7. Hwang SY, Lim G (2000) DNA chip technologies. Biotechnol Bioprocess Eng 5:159–163

    Article  CAS  Google Scholar 

  8. Gonzalez-Macia L, Morrin A, Smyth MR, Killard AJ (2010) Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst 35:845–867

    Article  CAS  Google Scholar 

  9. Delaney JT, Smith PJ, Schubert US (2009) Inkjet printing of proteins. Soft Matter 5:4866–4877

    Article  CAS  Google Scholar 

  10. Kukkola J, Mohl M, Leino AR, Toth G, Wu MC, Shchukarev A, Popov A, Mikkola JP, Lauri J, Riihimaki M, Lappalainen J, Jantunen H, Kordas K (2012) Inkjet printed gas sensors: metal decorated WO3 nanoparticles and their gas sensing properties. J Mater Chem 22:17878–17886

    Article  CAS  Google Scholar 

  11. Teichler A, Perelaer J, Schubert US (2013) Inkjet printing of organic electronics - comparison of deposition techniques and state-of-the-art developments. J Mater Chem C 1:1910–1925

    Article  CAS  Google Scholar 

  12. Barbulovic-Nad I, Lucente M, Yu S, Mingjun Z, Wheeler AR, Bussmann M (2006) Bio-microarray fabrication techniques - A review. Crit Rev Biotechnol 26:237–259

    Article  CAS  Google Scholar 

  13. Metters JP, Kadara RO, Banks CE (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136:1067–1076

    Article  CAS  Google Scholar 

  14. De Gans BJ, Hoeppener S, Schubert US (2006) Polymer-relief microstructures by inkjet etching. Adv Mater 18:910–914

    Article  CAS  Google Scholar 

  15. Abe K, Suzuki K, Citterio D (2008) Inkjet printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934

    Article  CAS  Google Scholar 

  16. Nie Z, Kumacheva E (2008) Patterning surfaces with functional polymers. Nat Mater 7:277–290

    Article  CAS  Google Scholar 

  17. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem, Int Ed 37:550–575

    Article  CAS  Google Scholar 

  18. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) "Dip-pen" nanolithography. Science 283:661–663

    Article  CAS  Google Scholar 

  19. Derby B (2008) Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures. J Mater Chem 18:5717–5721

    Article  CAS  Google Scholar 

  20. Setti L, Fraleoni-Morgera A, Ballarin B, Filippini A, Frascaro D, Piana C (2005) An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosens Bioelectron 20:2019–2026

    Article  CAS  Google Scholar 

  21. Setti L, Fraleoni-Morgera A, Mencarelli I, Filippini A, Ballarin B, Di Biase M (2007) An HRP-based amperometric biosensor fabricated by thermal inkjet printing. Sens Actuators, B 126:252–257

    Article  CAS  Google Scholar 

  22. Di Risio S, Yan N (2010) Bioactive paper through inkjet printing. J Adhes Sci Technol 24:661–684

    Article  CAS  Google Scholar 

  23. Khan MS, Fon D, Li X, Tian J, Forsythe J, Garnier G, Shen W (2010) Biosurface engineering through ink jet printing. Colloids Surf B 75:441–447

    Article  CAS  Google Scholar 

  24. Nishioka GM, Markey AA, Holloway CK (2004) Protein damage in drop-on-demand printers. J Am Chem Soc 126:16320–16321

    Article  CAS  Google Scholar 

  25. Di Risio SD, Yan N (2007) Piezoelectric ink-jet printing of horseradish peroxidase: Effect of Ink viscosity modifiers on activity. Macromol Rapid Commun 28:1934–1940

    Article  CAS  Google Scholar 

  26. Loffredo F, Mauro ADGD, Burrasca G, La Ferrara V, Quercia L, Massera E, Di Francia G, Sala DD (2009) Ink-jet printing technique in polymer/carbon black sensing device fabrication. Sens Actuators, B 143:421–429

    Article  CAS  Google Scholar 

  27. Ihalainen P, Majumdar H, Määttänen A, Wang S, Österbacka R, Peltonen J (2012) Versatile characterization of thiol-functionalized printed metal electrodes on flexible substrates for cheap diagnostic applications. Biochim Biophys Acta - Gen Subjects. doi:10.1016/j.bbagen.2012.09.007

    Google Scholar 

  28. Jalkanen T, Mäkilä E, Määttänen A, Tuura J, Kaasalainen M, Lehto V-P, Ihalainen P, Peltonen J, Salonen J (2012) Porous silicon micro- and nanoparticles for printed humidity sensors. Appl Phys Lett 101:263110–263114

    Article  CAS  Google Scholar 

  29. Andersson H, Manuilskiy A, Unander T, Lidenmark C, Forsberg S, Nilsson HE (2012) Inkjet printed silver nanoparticle humidity sensor with memory effect on paper. IEEE Sens J 12:1901–1905

    Article  Google Scholar 

  30. Sarfraz J, Tobjörk D, Österbacka R, Lindén M (2012) Low-cost hydrogen sulfide gas sensor on paper substrates: Fabrication and demonstration. IEEE Sens J 12:1973–1978

    Article  CAS  Google Scholar 

  31. Määttänen A, Vanamo U, Ihalainen P, Pulkkinen P, Tenhu H, Bobacka J, Peltonen J (2013) A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sens Actuators, B 177:153–162

    Article  CAS  Google Scholar 

  32. Altenberend U, Molina-Lopez F, Oprea A, Briand D, Bârsan N, De Rooij NF, Weimar U (2012) Towards fully printed capacitive gas sensors on flexible PET substrates based on Ag interdigitated transducers with increased stability. Sens Actuators, B. doi:10.1016/j.snb.2012.11.025

    Google Scholar 

  33. Claramunt S, Monereo O, Boix M, Leghrib R, Prades JD, Cornet A, Merino P, Merino C, Cirera A (2013) Flexible gas sensor array with an embedded heater based on metal decorated carbon nanofibres. Sens Actuators, B. doi:10.1016/j.snb.2012.12.093

    Google Scholar 

  34. Bidoki SM, Lewis DM, Clark M, Vakorov A, Millner PA, McGorman D (2007) Ink-jet fabrication of electronic components. J Micromech Microeng 17:967

    Article  CAS  Google Scholar 

  35. Magdassi S, Grouchko M, Berezin O, Kamyshny A (2010) Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4:1943–1948

    Article  CAS  Google Scholar 

  36. Perelaer J, Abbel R, Wünscher S, Jani R, van Lammeren T, Schubert US (2012) Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: From non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv Mater 24:2620–2625

    Article  CAS  Google Scholar 

  37. Tobjörk D, Aarnio H, Pulkkinen P, Bollström R, Määttänen A, Ihalainen P, Mäkelä T, Peltonen J, Toivakka M, Tenhu H, Österbacka R (2012) IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520:2949–2955

    Article  CAS  Google Scholar 

  38. Määttänen A, Ihalainen P, Pulkkinen P, Wang S, Tenhu HJ, Peltonen J (2012) Inkjet-printed gold electrodes on paper - characterisation and functionalisation. ACS Appl Mater Interfaces 4:955–964

    Article  CAS  Google Scholar 

  39. Nie X, Wang H, Zou J (2012) Inkjet printing of silver citrate conductive ink on PET substrate. Appl Surf Sci 261:554–560

    Article  CAS  Google Scholar 

  40. Ihalainen P, Majumdar H, Viitala T, Törngren B, Närjeoja T, Määttänen A, Sarfraz J, Härmä H, Yliperttula M, Österbacka R, Peltonen J (2012) Application of paper-supported printed gold electrodes for impedimetric immunosensor development. Biosensors 3:1–17

    Article  CAS  Google Scholar 

  41. Jensen GC, Krause CE, Sotzing GA, Rusling JF (2011) Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Phys Chem Chem Phys 13:4888–4894

    Article  CAS  Google Scholar 

  42. Hu C, Bai X, Wang Y, Jin W, Zhang X, Hu S (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal Chem 84:3745–3750

    Article  CAS  Google Scholar 

  43. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505

    Article  CAS  Google Scholar 

  44. Kordás K, Mustonen T, Tóth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan PM (2006) Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2:1021–1025

    Article  CAS  Google Scholar 

  45. Small WR, in het Panhuis M (2007) Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites. Small 3:1500–1503

    Article  CAS  Google Scholar 

  46. Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem, Int Ed 49:2154–2157

    Article  CAS  Google Scholar 

  47. Weng B, Shepherd RL, Crowley K, Killard AJ, Wallace GG (2010) Printing conducting polymers. Analyst 135:2779–2789

    Article  CAS  Google Scholar 

  48. Su S-J, Kuramoto N (2000) Synthesis of processable polyaniline complexed with anionic surfactant and its conducting blends in aqueous and organic system. Synth Met 108:121–126

    Article  CAS  Google Scholar 

  49. Crowley K, Morrin A, Hernandez A, O'Malley E, Whitten PG, Wallace GG, Smyth MR, Killard AJ (2008) Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles. Talanta 77:710–717

    Article  CAS  Google Scholar 

  50. Crowley K, O'Malley E, Morrin A, Smyth MR, Killard AJ (2008) An aqueous ammonia sensor based on an inkjet-printed polyaniline nanoparticle-modified electrode. Analyst 133:391–399

    Article  CAS  Google Scholar 

  51. Morrin A, Ngamna O, O'Malley E, Kent N, Moulton SE, Wallace GG, Smyth MR, Killard AJ (2008) The fabrication and characterization of inkjet-printed polyaniline nanoparticle films. Electrochim Acta 53:5092–5099

    Article  CAS  Google Scholar 

  52. Oh W-K, Kim S, Shin K-H, Jang Y, Choi M, Jang J (2013) Inkjet-printed polyaniline patterns for exocytosed molecule detection from live cells. Talanta 105:333–339

    Article  CAS  Google Scholar 

  53. Phongphut A, Sriprachuabwong C, Wisitsoraat A, Tuantranont A, Prichanont S, Sritongkham P (2013) A disposable amperometric biosensor based on inkjet-printed Au/PEDOT-PSS nanocomposite for triglyceride determination. Sens Actuators, B 178:501–507

    Article  CAS  Google Scholar 

  54. Sriprachuabwong C, Karuwan C, Wisitsorrat A, Phokharatkul D, Lomas T, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing. J Mater Chem 22:5478–5485

    Article  CAS  Google Scholar 

  55. Karuwan C, Sriprachuabwong C, Wisitsoraat A, Phokharatkul D, Sritongkham P, Tuantranont A (2012) Inkjet-printed graphene-poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) modified on screen printed carbon electrode for electrochemical sensing of salbutamol. Sens Actuators, B 161:549–555

    Article  CAS  Google Scholar 

  56. Tseng CC, Chou YH, Hsieh TW, Wang MW, Shu YY, Ger MD (2012) Interdigitated electrode fabricated by integration of ink-jet printing with electroless plating and its application in gas sensor. Colloid Surface A 402:45–52

    Article  CAS  Google Scholar 

  57. Mabrook MF, Pearson C, Petty MC (2006) Inkjet-printed polymer films for the detection of organic vapors. IEEE Sens J 6:1435–1444

    Article  CAS  Google Scholar 

  58. Yang M, Li LH, Zhang SQ, Li GY, Zhao HJ (2010) Preparation, characterisation and sensing application of inkjet-printed nanostructured TiO2 photoanode. Sens Actuators, B 147:622–628

    Article  CAS  Google Scholar 

  59. O'Toole M, Shepherd R, Wallace GG, Diamond D (2009) Inkjet printed LED based pH chemical sensor for gas sensing. Anal Chim Acta 652:308–314

    Article  CAS  Google Scholar 

  60. Courbat J, Briand D, Wollenstein J, de Rooij NF (2011) Polymeric foil optical waveguide with inkjet printed gas sensitive film for colorimetric sensing. Sens Actuators, B 160:910–915

    Article  CAS  Google Scholar 

  61. Courbat J, Briand D, Damon-Lacoste J, Wöllenstein J, de Rooij NF (2009) Evaluation of pH indicator-based colorimetric films for ammonia detection using optical waveguides. Sens Actuators, B 143:62–70

    Article  CAS  Google Scholar 

  62. Yoon B, Ham DY, Yarimaga O, An H, Lee CW, Kim JM (2011) Inkjet printing of conjugated polymer precursors on paper substrates for colorimetric sensing and flexible electrothermochromic display. Adv Mater 23:5492–5497

    Article  CAS  Google Scholar 

  63. Yoon B, Shin H, Yarimaga O, Ham DY, Kim J, Park IS, Kim JM (2012) An inkjet-printable microemulsion system for colorimetric polydiacetylene supramolecules on paper substrates. J Mater Chem 22:8680–8686

    Article  CAS  Google Scholar 

  64. Alkasir RSJ, Ornatska M, Andreescu S (2012) Colorimetric paper bioassay for the detection of phenolic compounds. Anal Chem 84:9729–9737

    Article  CAS  Google Scholar 

  65. Hossain SMZ, Luckham RE, Smith AM, Lebert JM, Davies LM, Pelton RH, Filipe CDM, Brennan JD (2009) Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks. Anal Chem 81:5474–5483

    Article  CAS  Google Scholar 

  66. Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81:9055–9064

    Article  CAS  Google Scholar 

  67. Hossain S, Ozimok C, Sicard C, Aguirre S, Ali M, Li Y, Brennan J (2012) Multiplexed paper test strip for quantitative bacterial detection. Anal Bioanal Chem 403:1567–1576

    Article  CAS  Google Scholar 

  68. Kwon H, Samain F, Kool ET (2012) Fluorescent DNAs printed on paper: Sensing food spoilage and ripening in the vapor phase. Chem Sci 3:2542–2549

    Article  CAS  Google Scholar 

  69. Yu A, Shang J, Cheng F, Paik BA, Kaplan JM, Andrade RB, Ratner DM (2012) Biofunctional paper via the covalent modification of cellulose. Langmuir 28:11265–11273

    Article  CAS  Google Scholar 

  70. Carter JC, Alvis RM, Brown SB, Langry KC, Wilson TS, McBride MT, Myrick ML, Cox WR, Grove ME, Colston BW (2006) Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept. Biosens Bioelectron 21:1359–1364

    Article  CAS  Google Scholar 

  71. Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9:3330–3337

    Article  CAS  Google Scholar 

  72. Kirk JT, Fridley GE, Chamberlain JW, Christensen ED, Hochberg M, Ratner DM (2011) Multiplexed inkjet functionalization of silicon photonic biosensors. Lab Chip 11:1372–1377

    Article  CAS  Google Scholar 

  73. Yu WW, White IM (2010) Inkjet printed surface enhanced raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630

    Article  CAS  Google Scholar 

  74. Yu WW, White IM (2013) Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138:1020–1025

    Article  CAS  Google Scholar 

  75. Bietsch A, Zhang JY, Hegner M, Lang HP, Gerber C (2004) Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15:873–880

    Article  CAS  Google Scholar 

  76. Ness SJ, Kim S, Woolley AT, Nordin GP (2012) Single-sided inkjet functionalization of silicon photonic microcantilevers. Sens Actuators, B 161:80–87

    Article  CAS  Google Scholar 

  77. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem, Int Ed 46:1318–1320

    Article  CAS  Google Scholar 

  78. Ballerini D, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluidics 13:769–787

    Article  Google Scholar 

  79. Parolo C, Merkoci A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42:450–457

    Article  CAS  Google Scholar 

  80. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 6:011301–011313

    Article  CAS  Google Scholar 

  81. Martinez AW (2011) Microfluidic paper-based analytical devices: from POCKET to paper-based ELISA. Bioanalysis 3:2589–2592

    Article  CAS  Google Scholar 

  82. Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. TrAC, Trends Anal Chem 28:925–942

    Article  CAS  Google Scholar 

  83. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  CAS  Google Scholar 

  84. Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398:885–893

    Article  CAS  Google Scholar 

  85. Li X, Tian J, Garnier G, Shen W (2010) Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B 76:564–570

    Article  CAS  Google Scholar 

  86. Li X, Tian J, Shen W (2010) Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17:649–659

    Article  Google Scholar 

  87. Citterio D, Maejima K, Suzuki K (2011) VOC-free inkjet patterning method for the fabrication of "paperfluidic" sensing devices. Paper presented at the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Seattle, Washington, USA

  88. Maejima K, Tomikawa S, Suzuki K, Citterio D (2013) Inkjet printing: An integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv. doi:10.1039/C3RA40828K

    Google Scholar 

  89. Jayawardane BM, McKelvie ID, Kolev SD (2012) A paper-based device for measurement of reactive phosphate in water. Talanta 100:454–460

    Article  CAS  Google Scholar 

  90. Delaney JL, Hogan CF, Tian JF, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306

    Article  CAS  Google Scholar 

  91. Määttänen A, Fors D, Wang S, Valtakari D, Ihalainen P, Peltonen J (2011) Paper-based planar reaction arrays for printed diagnostics. Sens Actuators, B 160:1404–1412

    Article  CAS  Google Scholar 

  92. Hossain SMZ, Brennan JD (2011) β-Galactosidase-based colorimetric paper sensor for determination of heavy metals. Anal Chem 83:8772–8778

    Article  CAS  Google Scholar 

  93. Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579

    Article  CAS  Google Scholar 

  94. Calvert P (2007) Printing cells. Science 318:208–209

    Article  CAS  Google Scholar 

  95. Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26:93–99

    Article  CAS  Google Scholar 

  96. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666

    Article  CAS  Google Scholar 

  97. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926

    Article  CAS  Google Scholar 

  98. Feng X, JinHui W, ShuQi W, Naside Gozde D, Umut Atakan G, Utkan D (2011) Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication 3:034101

    Article  CAS  Google Scholar 

  99. Ellis SR, Ferris CJ, Gilmore KJ, Mitchell TW, Blanksby SJ, in het Panhuis M (2012) Direct lipid profiling of single cells from inkjet printed microarrays. Anal Chem 84:9679–9683

    Article  CAS  Google Scholar 

  100. Liberski AR, Delaney JT, Schubert US (2010) “One cell−one well”: a new approach to inkjet printing single cell microarrays. ACS Comb Sci 13:190–195

    Article  CAS  Google Scholar 

  101. Ferris CJ, Gilmore KJ, Beirne S, McCallum D, Wallace GG, in het Panhuis M (2013) Bio-ink for on-demand printing of living cells. Biomater Sci 1:224–230

    Article  CAS  Google Scholar 

  102. Shabnam P, Madhuja G, Frédéric L, Karen CC (2010) Effects of surfactant and gentle agitation on inkjet dispensing of living cells. Biofabrication 2:025003

    Article  CAS  Google Scholar 

  103. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203

    Article  CAS  Google Scholar 

  104. Kit-Anan W, Olarnwanich A, Sriprachuabwong C, Kuruwan C, Tuantranont A, Wisitsoraat A, Srituravanich W, Pimpin A (2012) Disposable paper-based electrochemical sensor utilizing inkjet-printed polyaniline modified screen-printed carbon electrode for ascorbic acid detection. J Electroanal Chem 685:72–78

    Article  CAS  Google Scholar 

  105. Su SX, Ali M, Filipe CDM, Li YF, Pelton R (2008) Microgel-based inks for paper-supported biosensing applications. Biomacromolecules 9:935–941

    Article  CAS  Google Scholar 

  106. Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500

    Article  CAS  Google Scholar 

  107. Jung W, Sahner K, Leung A, Tuller HL (2009) Acoustic wave-based NO2 sensor: Ink-jet printed active layer. Sens Actuators, B 141:485–490

    Article  CAS  Google Scholar 

  108. Shen W, Li M, Ye C, Jiang L, Song Y (2012) Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection. Lab Chip 12:3089–3095

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Citterio.

Additional information

Nobutoshi Komuro and Shunsuke Takaki have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komuro, N., Takaki, S., Suzuki, K. et al. Inkjet printed (bio)chemical sensing devices. Anal Bioanal Chem 405, 5785–5805 (2013). https://doi.org/10.1007/s00216-013-7013-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7013-z

Keywords

Navigation