Skip to main content

Advertisement

Log in

A systematic capillary electrophoresis study on the effect of the buffer composition on the reactivity of the anticancer drug cisplatin to the DNA model 2′-deoxyguanosine 5′-monophosphate (dGMP)

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of DNA-targeted next-generation platinum-based anticancer chemotherapeutics is often accompanied by studies on the reactivity to DNA models. However, the incubation conditions used in literature vary widely, and some of the buffer/salts used are known to form complexes with Pt. Such coordination can influence the binding process and also the adducts formed. In a systematic approach, studies on the binding of cisplatin (1 mM) to dGMP (2 mM) in a series of different incubation solutions of relevance to biological systems are reported, employing capillary zone electrophoresis (CZE) with UV/vis and electrospray ionization–mass spectrometric (ESI-MS) detectors. Kinetic experiments performed with CZE–UV showed a high reactivity of dGMP to cisplatin in pure water (τ 1/2 = 4.1 ± 0.7 h) but a significantly slowed down in a solution containing a carbonate/phosphate buffer supplemented with NaCl, resulting in a half-life of dGMP of 25 ± 3 h. Especially carbonate had a major impact on the binding, though no coordination to the metal center was detectable with the methods used. The only adducts containing buffer components were (phosphate)Pt and tris(ammine)Pt species, as identified by means of CZE–ESI-MS, in addition to the main adduct [Pt(NH3)2(dGMP)2 − 4H+]2− and other less abundant Pt-containing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rosenberg B, Van Camp L, Krigas T (1965) Nature 205:698–699

    Article  CAS  Google Scholar 

  2. Galanski M (2006) Recent Pat Anti-Cancer Drug Disc 1:285–295

    Article  CAS  Google Scholar 

  3. Wheate NJ, Walker S, Craig GE, Oun R (2010) Dalton Trans 39:8113–8127

    Article  CAS  Google Scholar 

  4. Gibson D (2009) Dalton Trans 0:10681–10689

    Article  CAS  Google Scholar 

  5. Todd RC, Lippard SJ (2009) Metallomics 1:280–291

    Article  CAS  Google Scholar 

  6. Bell DN, Liu JJ, Tingle MD, Rattel B, Meyer TU, McKeage MJ (2008) Clin Exp Pharmacol Physiol 35:1440–1446

    CAS  Google Scholar 

  7. Allardyce CS, Dyson PJ, Coffey J, Johnson N (2002) Rapid Commun Mass Spectrom 16:933–935

    Article  CAS  Google Scholar 

  8. Brauckmann C, Wehe C, Kieshauer M, Lanvers-Kaminsky C, Sperling M, Karst U (2013) Anal Bioanal Chem 405:1855–1864

    Article  CAS  Google Scholar 

  9. Hall MD, Okabe M, Shen D-W, Liang X-J, Gottesman MM (2008) Annu Rev Pharmacol Toxicol 48:495–535

    Article  CAS  Google Scholar 

  10. Jennerwein M, Andrews P (1995) Drug Metab Dispos 23:178–184

    CAS  Google Scholar 

  11. Ziehe M, Esteban-Fernandez D, Hochkirch U, Thomale J, Linscheid MW (2012) Metallomics 4:1098–1104

    Article  CAS  Google Scholar 

  12. García Sar D, Montes-Bayón M, Blanco González E, Sierra LM, Aguado L, Comendador MA, Koellensperger G, Hann S, Sanz-Medel A (2009) Anal Chem 81:9553–9560

    Article  Google Scholar 

  13. Pompella A, Visvikis A, Paolicchi A, Tata VD, Casini AF (2003) Biochem Pharmacol 66:1499–1503

    Article  CAS  Google Scholar 

  14. Kasherman Y, Sturup S, Gibson D (2009) J Med Chem 52:4319–4328

    Article  CAS  Google Scholar 

  15. Esteban-Fernandez D, Canas B, Pizarro I, Palacios MA, Gomez-Gomez MM (2007) J Anal At Spectrom 22:1113–1121

    Article  CAS  Google Scholar 

  16. Reedijk J (2009) Eur J Inorg Chem 2009:1303–1312

    Article  Google Scholar 

  17. Bosch ME, Sánchez AJR, Rojas FS, Ojeda CB (2008) J Pharm Biomed Anal 47:451–459

    Article  CAS  Google Scholar 

  18. Polak M, Plavec J, Trifonova A, Foldesi A, Chattopadhyaya J (1999) J Chem Soc, Perkin Trans 1 0:2835–2843

    Article  CAS  Google Scholar 

  19. Küng A, Strickmann DB, Galanski M, Keppler BK (2001) J Inorg Biochem 86:691–698

    Article  Google Scholar 

  20. Hann S, Zenker A, Galanski M, Bereuter TL, Stingeder G, Keppler BK (2001) Fresenius J Anal Chem 370:581–586

    Article  CAS  Google Scholar 

  21. Warnke U, Gysler J, Hofte B, Tjaden UR, van der Greef J, Kloft C, Schunack W, Jaehde U (2001) Electrophoresis 22:97–103

    Article  CAS  Google Scholar 

  22. Warnke U, Rappel C, Meier H, Kloft C, Galanski M, Hartinger CG, Keppler BK, Jaehde U (2004) ChemBioChem 5:1543–1549

    Article  CAS  Google Scholar 

  23. Garcia Sar D, Montes-Bayon M, Blanco Gonzalez E, Sanz-Medel A (2006) J Anal At Spectrom 21:861–868

    Article  CAS  Google Scholar 

  24. Jung Y, Lippard SJ (2007) Chem Rev 107:1387–1407

    Article  CAS  Google Scholar 

  25. Davies MS, Berners-Price SJ, Hambley TW (2000) Inorg Chem 39:5603–5613

    Article  CAS  Google Scholar 

  26. Binter A, Goodisman J, Dabrowiak JC (2006) J Inorg Biochem 100:1219–1224

    Article  CAS  Google Scholar 

  27. Park J-S, Kim SH, Lee N-K, Lee KJ, Hong S-C (2012) Phys Chem Chem Phys 14:3128–3133

    Article  CAS  Google Scholar 

  28. Todd RC, Lovejoy KS, Lippard SJ (2007) J Am Chem Soc 129:6370–6371

    Article  CAS  Google Scholar 

  29. Appleton TG, Berry RD, Davis CA, Hall JR, Kimlin HA (1984) Inorg Chem 23:3514–3521

    Article  CAS  Google Scholar 

  30. Prenxler PD, McFadyen WD (1997) J Inorg Biochem 68:279–282

    Article  Google Scholar 

  31. Centerwall CR, Goodisman J, Kerwood DJ, Dabrowiak JC (2005) J Am Chem Soc 127:12768–12769

    Article  CAS  Google Scholar 

  32. Bytzek AK, Hartinger CG (2012) Electrophoresis 33:622–634

    Article  CAS  Google Scholar 

  33. Hartinger CG, Keppler BK (2007) Electrophoresis 28:3436–3446

    Article  CAS  Google Scholar 

  34. Klampfl CW (2009) Electrophoresis 30:S83–S91

    Article  Google Scholar 

  35. Dhara SC (1970) Indian J Chem, Sect B 8:193–194

    Google Scholar 

  36. Basu A, Krishnamurthy S (2011) J Nucleic Acids 2011:16

    Google Scholar 

  37. Schluga P, Hartinger CG, Egger A, Reisner E, Galanski M, Jakupec MA, Keppler BK (2006) Dalton Trans 14:1796–1802

    Article  Google Scholar 

  38. Zenker A, Galanski M, Bereuter TL, Keppler BK, Lindner W (2000) J Chromatogr B 745:211–219

    Article  CAS  Google Scholar 

  39. Chottard JC, Girault JP, Chottard G, Lallemand JY, Mansuy D (1980) J Am Chem Soc 102:5565–5572

    Article  CAS  Google Scholar 

  40. Song B, Oswald G, Bastian M, Sigel H, Lippert B (1996) Met Based Drugs 3:131–141

    Article  CAS  Google Scholar 

  41. Grabmann G, Meier SM, Scaffidi-Domianello YY, Galanski M, Keppler BK, Hartinger CG (2012) J Chromatogr A 1267:156–161

    Article  CAS  Google Scholar 

  42. Scovell WM, O’Connor T (1977) J Am Chem Soc 99:120–126

    Article  CAS  Google Scholar 

  43. Østergaard J, Jorgensen L, Engelbrecht Thomsen A, Weng Larsen S, Larsen C, Jensen H (2008) Electrophoresis 29:3320–3324

    Article  Google Scholar 

  44. Zorbas-Seifried S, Jakupec MA, Kukushkin NV, Grössl M, Hartinger CG, Semenova O, Zorbas H, Kukushkin VY, Keppler BK (2007) Mol Pharmacol 71:357–365

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the University of Vienna for a PhD scholarship for G.G. within the doctoral program BioProMoTION (Bioactivity Profiling and Metabolism) and COST CM1105 and the Austrian Science Fund (FWF, project number I496-B11) for financial support. Verena Pichler is acknowledged for preparing cisplatin, and G.G would like to thank Samuel M. Meier and Alexander E. Egger for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian G. Hartinger.

Additional information

This paper is dedicated to Professor Franz Dickert on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabmann, G., Keppler, B.K. & Hartinger, C.G. A systematic capillary electrophoresis study on the effect of the buffer composition on the reactivity of the anticancer drug cisplatin to the DNA model 2′-deoxyguanosine 5′-monophosphate (dGMP). Anal Bioanal Chem 405, 6417–6424 (2013). https://doi.org/10.1007/s00216-013-6937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6937-7

Keywords

Navigation