Skip to main content
Log in

Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Considering current security issues, powerful tools for detection of security-relevant substances such as traces of explosives and drugs/drug precursors related to clandestine laboratories are required. Especially in the field of detection of explosives and improvised explosive devices, several relevant compounds exhibit a very low vapor pressure. Ambient pressure laser desorption is proposed to make these substances available in the gas phase for the detection by adapted mass spectrometers or in the future with ion-mobility spectrometry as well. In contrast to the state-of-the-art thermal desorption approach, by which the sample surface is probed for explosive traces by a wipe pad being transferred to a thermal desorber unit, by the ambient pressure laser desorption approach presented here, the sample is directly shockwave ablated from the surface. The laser-dispersed molecules are sampled by a heated sniffing capillary located in the vicinity of the ablation spot into the mass analyzer. This approach has the advantage that the target molecules are dispersed more gently than in a thermal desorber unit where the analyte molecules may be decomposed by the thermal intake. In the technical realization, the sampling capillary as well as the laser desorption optics are integrated in the tip of an endoscopic probe or a handheld sampling module. Laboratory as well as field test scenarios were performed, partially in cooperation with the Federal Criminal Police Office (Bundeskriminalamt, BKA, Wiesbaden, Germany), in order to demonstrate the applicability for various explosives, drugs, and drug precursors. In this work, we concentrate on the detection of explosives. A wide range of samples and matrices have been investigated successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kojima K, Sakairi M, Takada Y, Nakamura J (2000) Vapor detection of TNT and RDX using atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction (CFI). J Mass Spectrom Soc Jpn 48(5):3

    Article  Google Scholar 

  2. Pella PA (1977) Measurement of vapor pressures of TNT, 2,4-DNT, 2,6-DNT and EGDN. J Chem Thermodyn 9(4):301–305. doi:10.1016/0021-9614(77)90049-0

    Article  CAS  Google Scholar 

  3. Handschuh M, Nettesheim S, Zenobi R (1998) Laser induced desorption of thin molecular films investigated with high time resolution. J Chem Phys 108(16):6548–6549. doi:10.1063/1.476066

    Article  CAS  Google Scholar 

  4. Weickhardt C, Kaiser N, Borsdorf H (2012) Ion mobility spectrometry of laser desorbed pesticides from fruit surfaces. International Journal for Ion Mobility Spectrometry 15(2):55–62. doi:10.1007/s12127-012-0091-3

    Article  CAS  Google Scholar 

  5. Burgess D, Viswanathan R, Hussla I, Stair PC, Weitz E (1983) Pulsed laser induced thermal desorption of CO from copper surfaces. J Chem Phys 79(10):5200–5202. doi:10.1063/1.445647

    Article  CAS  Google Scholar 

  6. O'Neill E, Harrington D, Allison J (2009) Interpretation of laser desorption mass spectra of unexpected inorganic species found in a cosmetic sample of forensic interest: fingernail polish. Anal Bioanal Chem 394(8):2029–2038. doi:10.1007/s00216-009-2760-6

    Article  Google Scholar 

  7. Smith G, Krancevic B, Huestis D, Oser H (2009) Laser desorption studies using laser-induced fluorescence of large aromatic molecules. Appl Phys B-Lasers Opt 94(1):127–132. doi:10.1007/s00340-008-3295-9

    Article  CAS  Google Scholar 

  8. Bauer C, Geiser P, Burgmeier J, Holl G, Schade W (2006) Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives. Appl Phys B-Lasers Opt 85(2–3):251–256. doi:10.1007/s00340-006-2372-1

    CAS  Google Scholar 

  9. Morgan JS, Bryden WA, Miragliotta JA, Aamodt LC (1999) Improved detection of explosive residues by laser thermal desorption. Johns Hopkins APL Tech Dig 20(3):389–395

    Google Scholar 

  10. Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Ambient mass spectrometry. Science 311(5767):1566–1570. doi:10.1126/science.1119426

    Article  CAS  Google Scholar 

  11. Alberici R, Simas R, Sanvido G, Romao W, Lalli P, Benassi M, Cunha I, Eberlin M (2010) Ambient mass spectrometry: bringing MS into the “real world”. Anal Bioanal Chem 398(1):265–294. doi:10.1007/s00216-010-3808-3

    Article  CAS  Google Scholar 

  12. Talaty N, Mulligan CC, Justes DR, Jackson AU, Noll RJ, Cooks RG (2008) Fabric analysis by ambient mass spectrometry for explosives and drugs. Analyst 133(11):1532–1540

    Article  CAS  Google Scholar 

  13. Bennett MJ, Steiner RR (2009) Detection of gamma-hydroxybutyric acid in various drink matrices via AccuTOF-DART. J Forensic Sci 54(2):370–375. doi:10.1111/j.1556-4029.2008.00955.x

    Article  CAS  Google Scholar 

  14. Takats Z, Cotte-Rodriguez I, Talaty N, Chen HW, Cooks RG (2005) Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass spectrometry. Chem Commun 15:1950–1952. doi:10.1039/b418697d

    Article  Google Scholar 

  15. Cotte-Rodriguez I, Takats Z, Talaty N, Chen HW, Cooks RG (2005) Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Anal Chem 77(21):6755–6764. doi:10.1021/ac050995

    Article  CAS  Google Scholar 

  16. Cotte-Rodriguez I, Hernandez-Soto H, Chen H, Cooks RG (2008) In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization. Anal Chem 80(5):1512–1519. doi:10.1021/ac7020085

    Article  CAS  Google Scholar 

  17. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473

    Article  CAS  Google Scholar 

  18. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79(21):8098–8106. doi:10.1021/ac071181r

    Article  CAS  Google Scholar 

  19. Hillenkamp F, Karas M (2000) Matrix-assisted laser desorption/ionisation, an experience. Int J Mass Spectrom 200(1–3):71–77

    CAS  Google Scholar 

  20. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60(20):2299–2301

    Article  CAS  Google Scholar 

  21. Huang MZ, Yuan CH, Cheng SC, Cho YT, Shiea J (2010) Ambient ionization mass spectrometry. In: Annual review of analytical chemistry, vol 3. Annual Review of Analytical Chemistry. Annual Reviews, Palo Alto, pp. 43–65. doi:10.1146/annurev.anchem.111808.073702. Accessed 01/12/11

  22. Eiceman GA, Anderson GK, Danen WC, Ferris MJ, Tiee JJ (1988) Laser desorption and ionization of solid polycyclic aromatic hydrocarbons in air with analysis by ion mobility spectrometry. Anal Lett 21(4):539–552

    Article  CAS  Google Scholar 

  23. Perdian DC, Schieffer GM, Houk RS (2009) Atmospheric pressure laser desorption/ionization of plant metabolites and plant tissue using colloidal graphite. Rapid Commun Mass Spectrom 24(4):397–402. doi:10.1002/rcm.4405

    Article  Google Scholar 

  24. Grange AH, Sovocool GW (2011) Detection of illicit drugs on surfaces using direct analysis in real time (DART) time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25(9):1271–1281. doi:10.1002/rcm.5009

    Article  CAS  Google Scholar 

  25. Luosujarvi L, Arvola V, Haapala M, Pol J, Saarela V, Franssila S, Kotiaho T, Kostiainen R, Kauppila TJ (2008) Desorption and ionization mechanisms in desorption atmospheric pressure photoionization. Anal Chem 80(19):7460–7466. doi:10.1021/ac801186x

    Article  CAS  Google Scholar 

  26. Stockle R, Setz P, Deckert V, Lippert T, Wokaun A, Zenobi R (2001) Nanoscale atmospheric pressure laser ablation-mass spectrometry. Anal Chem 73(7):1399–1402. doi:10.1021/ac001440b

    Article  CAS  Google Scholar 

  27. Shahar T, Dagan S, Amirav A (1998) Laser desorption fast gas chromatography-mass spectrometry in supersonic molecular beams. Journal of the American Society for Mass Spectrometry 9(6):628–637

    Article  CAS  Google Scholar 

  28. Weickhardt C (2003) Laser desorption combined with hyperthermal surface ionization time-of-flight mass spectrometry. Anal Chem 75(20):5602–5607. doi:10.1021/ac0302197

    Article  CAS  Google Scholar 

  29. Li L, Lubman DM (1988) Pulsed laser desorption method for volatilizing thermally labile molecules for supersonic jet spectroscopy. Rev Sci Instrum 59(4):557–561. doi:10.1063/1.1139832

    Article  CAS  Google Scholar 

  30. Butcher DJ (1999) Vacuum ultraviolet radiation for single-photoionization mass spectrometry: a review. Microchem J 62(3):354–362. doi:10.1006/mchj.1999.1745

    Article  CAS  Google Scholar 

  31. Schramm E, Kurten A, Holzer J, Mitschke S, Muhlberger F, Sklorz M, Wieser J, Ulrich A, Putz M, Schulte-Ladbeck R, Schultze R, Curtius J, Borrmann S, Zimmermann R (2009) Trace detection of organic compounds in complex sample matrixes by single photon ionization ion trap mass spectrometry: real-time detection of security-relevant compounds and online analysis of the coffee-roasting process. Anal Chem 81(11):4456–4467. doi:10.1021/ac900289r

    Article  CAS  Google Scholar 

  32. Lockyer NP, Vickerman JC (1997) Single photon ionisation mass spectrometry using laser-generated vacuum ultraviolet photons. Laser Chem 17(3):139–159. doi:10.1155/1997/53174

    Article  CAS  Google Scholar 

  33. Shi YJ, Lipson RH (2005) An overview of organic molecule soft ionization using vacuum ultraviolet laser radiation. Can J Chem-Rev Can Chim 83(11):1891–1902. doi:10.1139/v05-193

    Article  CAS  Google Scholar 

  34. Mallard WG, Linstrom PJ (2000). NIST Chemistry WebBook, NIST Standard Reference Database: National Institute of Standards and Technology (NIST)

  35. Isaacman G, Chan AWH, Nah T, Worton DR, Ruehl CR, Wilson KR, Goldstein AH (2012) Heterogeneous OH oxidation of motor oil particles causes selective depletion of branched and less cyclic hydrocarbons. Environ Sci Technol 46(19):10632–10640. doi:10.1021/es302768a

    Article  CAS  Google Scholar 

  36. Hankin SM, Tasker AD, Robson L, Ledingham KWD, Fang X, McKenna P, McCanny T, Singhal RP, Kosmidis C, Tzallas P, Jaroszynski DA, Jones R, Issac RC, Jamison S (2002) Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules. Rapid Commun Mass Spectrom 16(2):111–116

    Article  CAS  Google Scholar 

  37. Mullen C, Irwin A, Pond BV, Huestis DL, Coggiola MJ, Oser H (2006) Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry. Anal Chem 78(11):3807–3814. doi:10.1021/ac060190h

    Article  CAS  Google Scholar 

  38. Mullen C, Huestis D, Coggiola M, Oser H (2006) Laser photoionization of triacetone triperoxide (TATP) by femtosecond and nanosecond laser pulses. Int J Mass Spectrom 252(1):69–72. doi:10.1016/j.ijms.2006.01.018

    Article  CAS  Google Scholar 

  39. Pond BV, Mullen C, Suarez I, Kessler J, Briggs K, Young SE, Coggiola MJ, Crosley DR, Oser H (2007) Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry. Appl Phys B-Lasers Opt 86(4):735–742. doi:10.1007/s00340-006-2465-x

    Article  CAS  Google Scholar 

  40. Yamaguchi S, Uchimura T, Imasaka T (2009) Gas chromatography/time-of-flight mass spectrometry of triacetone triperoxide based on femtosecond laser ionization. Rapid Commun Mass Spectrom 23(19):3101–3106. doi:10.1002/rcm.4225

    Article  CAS  Google Scholar 

  41. Schramm E, Muehlberger F, Mitschke S, Reichardt G, Schulte-Ladbeck R, Puetz M, Zimmermann R (2008) Determination of the ionization potentials of security-relevant substances with single photon ionization mass spectrometry using synchrotron radiation. Appl Spectrosc 62(2):238–247

    Article  CAS  Google Scholar 

  42. March RE (1997) An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32(4):351–369. doi:10.1002/(sici)1096-9888(199704)32:4<351::aid-jms512>3.0.co;2-y

    Article  CAS  Google Scholar 

  43. Smeraglia J, Baldrey SF, Watson D (2002) Matrix effects and selectivity issues in LC-MS-MS. Chromatographia 55:S95–S99. doi:10.1007/bf02493363

    Article  CAS  Google Scholar 

  44. Yinon J, McClellan JE, Yost RA (1997) Electrospray ionization tandem mass spectrometry collision-induced dissociation study of explosives in an ion trap mass spectrometer. Rapid Commun Mass Spectrom 11(18):1961–1970. doi:10.1002/(sici)1097-0231(199712)11:18<1961::aid-rcm99>3.0.co;2-k

    Article  CAS  Google Scholar 

  45. Schramm E, Holzer J, Putz M, Schulte-Ladbeck R, Schultze R, Sklorz M, Ulrich A, Wieser J, Zimmermann R (2009) Real-time trace detection of security-relevant compounds in complex sample matrices by thermal desorption-single photon ionization-ion trap mass spectrometry (TD-SPI-ITMS). Anal Bioanal Chem 395(6):1795–1807. doi:10.1007/s00216-009-2916-4

    Article  CAS  Google Scholar 

  46. Gillis RG, Lacey MJ, Shannon JS (1974) Chemical ionisation mass spectra of explosives. Organic Mass Spectrometry 9(3):359–364. doi:10.1002/oms.1210090317

    Article  CAS  Google Scholar 

  47. Pate CT, Mach MH (1978) Analysis of explosives using chemical ionization mass spectroscopy. International Journal of Mass Spectrometry and Ion Physics 26(3):267–277

    Article  CAS  Google Scholar 

  48. Gielsdorf W (1981) Identifizierung einiger Sprengstoffe mit Hilfe spezieller GC/MS-Techniken, insbesondere der PPNICI-Methode. Fresenius Zeitschrift Fur Analytische Chemie 308(2):123–128

    Article  CAS  Google Scholar 

  49. Wu YH, Lin KL, Chen SC, Chang YZ (2008) Integration of GC/EI-MS and GC/NCI-MS for simultaneous quantitative determination of opiates, amphetamines, MDMA, ketamine, and metabolites in human hair. J Chromatogr B 870(2):192–202. doi:10.1016/j.jchromb.2008.06.017

    Article  CAS  Google Scholar 

  50. Collin OL, Zimmermann CM, Jackson GP (2009) Fast gas chromatography negative chemical ionization tandem mass spectrometry of explosive compounds using dynamic collision-induced dissociation. Int J Mass Spectrom 279(2–3):93–99. doi:10.1016/j.ijms.2008.10.009

    CAS  Google Scholar 

  51. Boumsellek S, Alajajian SH, Chutjian A (1992) Negative-ion formation in the explosives RDX, PETN, and TNT by using the reversal electron attachment detection technique. Journal of the American Society for Mass Spectrometry 3(3):243–247

    Article  CAS  Google Scholar 

  52. Jurschik S, Sulzer P, Petersson F, Mayhew CA, Jordan A, Agarwal B, Haidacher S, Seehauser H, Becker K, Mark TD (2010) Proton transfer reaction mass spectrometry for the sensitive and rapid real-time detection of solid high explosives in air and water. Anal Bioanal Chem 398(7–8):2813–2820. doi:10.1007/s00216-010-4114-9

    Article  CAS  Google Scholar 

  53. Zimmermann R, Mühlberger F, Ulrich A, Wieser J (2007) Photoionisierungs-Massenspektrometrie mit neuer Lichtquelle. Nachrichten aus der Chemie 55(4):425–429. doi:10.1002/nadc.200747960

    Article  CAS  Google Scholar 

  54. Geissler R, Saraji-Bozorgzad MR, Groger T, Fendt A, Streibel T, Sklorz M, Krooss BM, Fuhrer K, Gonin M, Kaisersberger E, Denner T, Zimmermann R (2009) Single photon ionization orthogonal acceleration time-of-flight mass spectrometry and resonance enhanced multiphoton ionization time-of-flight mass spectrometry for evolved gas analysis in thermogravimetry: comparative analysis of crude oils. Anal Chem 81(15):6038–6048. doi:10.1021/ac900216y

    Article  CAS  Google Scholar 

  55. Streibel T, Fendt A, Geissler R, Kaisersberger E, Denner T, Zimmermann R (2009) Thermal analysis/mass spectrometry using soft photo-ionisation for the investigation of biomass and mineral oils. J Therm Anal Calorim 97(2):615–619. doi:10.1007/s10973-008-9769-5

    Article  CAS  Google Scholar 

  56. Muhlberger F, Streibel T, Wieser J, Ulrich A, Zimmermann R (2005) Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath. Anal Chem 77(22):7408–7414. doi:10.1021/ac051194+

    Article  CAS  Google Scholar 

  57. Muhlberger F, Wieser J, Morozov A, Ulrich A, Zimmermann R (2005) Single-photon ionization quadrupole mass spectrometry with an electron beam plumped excimer light source. Anal Chem 77(7):2218–2226. doi:10.1021/ac048319f

    Article  CAS  Google Scholar 

  58. Saraj-Bozorgzad M, Geissler R, Streibel T, Muhlberger F, Sklorz M, Kaisersberger E, Denner T, Zimmermann R (2008) Thermogravimetry coupled to single photon ionization quadrupole mass spectrometry: a tool to investigate the chemical signature of thermal decomposition of polymeric materials. Anal Chem 80(9):3393–3403. doi:10.1021/ac702599y

    Article  Google Scholar 

  59. Muhlberger F, Wieser J, Ulrich A, Zimmermann R (2002) Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis. Anal Chem 74(15):3790–3801. doi:10.1021/ac0200825

    Article  CAS  Google Scholar 

  60. Fendt A, Streibel T, Sklorz M, Richter D, Dahmen N, Zimmermann R (2012) On-line process analysis of biomass flash pyrolysis gases enabled by soft photoionization mass spectrometry. Energy Fuel 26(1):701–711. doi:10.1021/ef2012613

    Article  CAS  Google Scholar 

  61. Mitschke S, Adam T, Streibel T, Baker RR, Zimmermann R (2005) Application of time-of-flight mass spectrometry with laser-based photoionization methods for time-resolved on-line analysis of mainstream cigarette smoke. Anal Chem 77(8):2288–2296. doi:10.1021/ac050075r

    Article  CAS  Google Scholar 

  62. Rosen JM, Dickinson C (1969) Vapor pressures and heats of sublimation of some high melting organic explosives. J Chem Eng Data 14(1):120. doi:10.1021/je60040a044

    Article  CAS  Google Scholar 

  63. Östmark H, Wallin S, Ang HG (2012) Vapor pressure of explosives: a critical review. Propellants, Explosives, Pyrotechnics 37(1):12–23. doi:10.1002/prep.201100083

    Article  Google Scholar 

  64. Meyer R, Köhler J, Homburg A (2002) Explosives, 5th edn. Wiley-VCH, Weinheim, p 177

    Book  Google Scholar 

Download references

Acknowledgments

This investigation was performed within the SAFE-inside project funded by the Federal Ministry of Education and Research (BMBF), FKZ 13N9529. We want especially thank the German Federal Criminal Police Office (BKA) for providing the samples and the opportunity of a measurement campaign with real crime samples in Wiesbaden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zimmermann.

Additional information

Published in the topical collection Photo Ionisation in Mass Spectrometry with guest editor Ralf Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlert, S., Hölzer, J., Rittgen, J. et al. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry. Anal Bioanal Chem 405, 6979–6993 (2013). https://doi.org/10.1007/s00216-013-6839-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6839-8

Keywords

Navigation