Skip to main content
Log in

Detection of dopamine in the presence of excess ascorbic acid at physiological concentrations through redox cycling at an unmodified microelectrode array

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of dopamine was examined under redox cycling conditions in the presence and absence of a high concentration of the interferent ascorbic acid at a coplanar, microelectrode array where the area of the generator electrodes was larger than that of the collector electrodes. Redox cycling converts a redox species between its oxidized and reduced forms by application of suitable potentials on a set of closely located generator and collector electrodes. It allows signal amplification and discrimination between species that undergo reversible and irreversible electron transfer. Microfabrication was used to produce 18 individually addressable, 4-μm-wide gold band electrodes, 2 mm long, contained in an array having an interelectrode spacing of 4 μm. Because the array electrodes are individually addressable, each can be selectively biased to produce an overall optimal electrochemical response. Four adjacent microbands were shorted together to serve as the collector, and were flanked on each side by seven microbands shorted as the generator (a ratio of 1:3.5 of electroactive area, respectively). This configuration achieved a detection limit of 0.454 ± 0.026 μM dopamine at the collector in the presence of 100 μM ascorbic acid in artificial cerebrospinal fluid buffer, concentrations that are consistent with physiological levels. Enhancement by surface modification of the microelectrode array to achieve this detection limit was unnecessary. The results suggest that the redox cycling method may be suitable for in vivo quantification of transients and basal levels of dopamine in the brain without background subtraction.

Microelectrode array chip design and assignment of electrodes used for determination of dopamine (DA) in the presence of large excess of ascorbic acid (AA) by redox cycling. Analytes (DA and AA) are oxidized at the generator electrodes to form dopamine-o-quinone (DAQ) and dehydroascorbic acid (AAo) which diffuse to the nearest collector electrodes. DA is selectively detected at the collector electrodes, because DAQ can be reduced there, but AAo hydrolyzes to a nonelectroactive form prior to arrival

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benes FM (2001) Arvid Carlsson and the discovery of dopamine. Trends Pharmacol Sci 22(1):46–47

    Article  CAS  Google Scholar 

  2. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28(3):309–369

    Article  CAS  Google Scholar 

  3. Pan WX, Schmidt R, Wickens JR, Hyland BI (2005) Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J Neurosci 25(26):6235–6242

    Article  CAS  Google Scholar 

  4. Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value by dopamine neurons. Science 307(5715):1642–1645

    Article  CAS  Google Scholar 

  5. Wise RA (1998) Drug-activation of brain reward pathways. Drug Alcohol Depend 51(1–2):13–22

    Article  CAS  Google Scholar 

  6. Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 7(12):967–975

    Article  CAS  Google Scholar 

  7. Salgado-Pineda P, Delaveau P, Blin O, Nieoullon A (2005) Dopaminergic contribution to the regulation of emotional perception. Clin Neuropharmacol 28(5):228–237

    Article  CAS  Google Scholar 

  8. Schultz W (2007) Multiple dopamine functions at different time courses. Annu Rev Neurosci 30:259–288

    Article  CAS  Google Scholar 

  9. Obata T (2002) Dopamine efflux by MPTP and hydroxyl radical generation. J Neural Transm 109(9):1159–1180

    Article  CAS  Google Scholar 

  10. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60(13):769A–793A

    CAS  Google Scholar 

  11. Bibb JA, Yan Z, Svenningsson P, Snyder GL, Pieribone VA, Horiuchi A, Nairn AC, Messer A, Greengard P (2000) Severe deficiencies in dopamine signaling in presymptomatic Huntington’s disease mice. Proc Natl Acad Sci U S A 97(12):6809–6814

    Article  CAS  Google Scholar 

  12. Phillips PEM, Stuber GD, Heien M, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422(6932):614–618

    Article  CAS  Google Scholar 

  13. Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug-dependence. Science 242(4879):715–723

    Article  CAS  Google Scholar 

  14. Mink JW (2001) Basal ganglia dysfunction in Tourette’s syndrome: a new hypothesis. Pediatr Neurol 25(3):190–198

    Article  CAS  Google Scholar 

  15. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity–a hypothesis for the etiology of schizophrenia. Neuroscience 41(1):1–24

    Article  CAS  Google Scholar 

  16. Salahpour A, Ramsey AJ, Medvedev IO, Kile B, Sotnikova TD, Holmstrand E, Ghisi V, Nicholls PJ, Wong L, Murphy K, Sesack SR, Wightman RM, Gainetdinov RR, Caron MG (2008) Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter. Proc Natl Acad Sci U S A 105(11):4405–4410

    Article  CAS  Google Scholar 

  17. Garris PA, Rebec GV (2002) Modeling fast dopamine neurotransmission in the nucleus accumbens during behavior. Behav Brain Res 137:47–63

    Article  CAS  Google Scholar 

  18. Sunsay C, Rebec GV (2008) Real-time dopamine efflux in the nucleus accumbens core during pavlovian conditioning. Behav Neurosci 122(2):358–367

    Article  Google Scholar 

  19. Aragona BJ, Cleaveland NA, Stuber GD, Day JJ, Carelli RM, Wightman RM (2008) Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J Neurosci 28(35):8821–8831

    Article  CAS  Google Scholar 

  20. Zhang T, Zhang L, Liang Y, Siapas AG, Zhou F-M, Dani JA (2009) Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine. J Neurosci 29(13):4035–4043

    Article  CAS  Google Scholar 

  21. Borland LM, Michael AC (2004) Voltammetric study of the control of striatal dopamine release by glutamate. J Neurochem 91(1):220–229

    Article  CAS  Google Scholar 

  22. Oneill RD (1994) Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in-vivo–a review. Analyst 119(5):767–779

    Article  CAS  Google Scholar 

  23. Robinson DL, Hermans A, Seipel AT, Wightman RM (2008) Monitoring rapid chemical communication in the brain. Chem Rev 108(7):2554–2584

    Article  CAS  Google Scholar 

  24. Borland LM, Shi GY, Yang H, Michael AC (2005) Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J Neurosci Methods 146(2):149–158

    Article  CAS  Google Scholar 

  25. Kulagina NV, Zigmond MJ, Michael AC (2001) Glutamate regulates the spontaneous and evoked release of dopamine in the rat striatum. Neuroscience 102(1):121–128

    Article  CAS  Google Scholar 

  26. Bungay PM, Newton-Vinson P, Isele W, Garris PA, Justice JB (2003) Microdialysis of dopamine interpreted with quantitative model incorporating probe implantation trauma. J Neurochem 86(4):932–946

    Article  CAS  Google Scholar 

  27. Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1980) In vivo electrochemical detection of catechols in the neostriatum of anesthetized rats–dopamine or dopac. Nature 286(5776):902–904

    Article  CAS  Google Scholar 

  28. Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1981) Voltammetry in the striatum of chronic freely moving rats: detection of catechols and ascorbic acid. Brain Res 223(1):69–80

    Article  CAS  Google Scholar 

  29. Popa E, Notsu H, Miwa T, Tryk DA, Fujishima A (1999) Selective electrochemical detection of dopamine in the presence of ascorbic acid at anodized diamond thin film electrodes. Electrochem Solid State Lett 2(1):49–51

    Article  CAS  Google Scholar 

  30. Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23(5):209–216

    Article  CAS  Google Scholar 

  31. Adams RN, Conti J, Marsden CA, Strope E (1978) Measurement of dopamine and 5-hydroxytryptamine release in CNS of freely moving unanesthetized rats. Br J Pharmacol 64(3):P470–P471

    Google Scholar 

  32. Hoffman AF, Gerhardt GA (1998) In vivo electrochemical studies of dopamine clearance in the rat substantia nigra: effects of locally applied uptake inhibitors and unilateral 6-hydroxydopamine lesions. J Neurochem 70(1):179–189

    Article  CAS  Google Scholar 

  33. Miller AD, Forster GL, Yeomans JS, Blaha CD (2005) Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat. Neuroscience 136(2):531–538

    Article  CAS  Google Scholar 

  34. Unger EL, Eve DJ, Perez XA, Reichenbach DK, Xu YQ, Lee MK, Andrews AM (2006) Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human alpha-synuclein in mice. Neurobiol Dis 21(2):431–443

    Article  CAS  Google Scholar 

  35. Venton BJ, Troyer KP, Wightman RM (2002) Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration. Anal Chem 74(3):539–546

    Article  CAS  Google Scholar 

  36. Batchelor-McAuley C, Dickinson EJF, Rees NV, Toghill KE, Compton RG (2012) New electrochemical methods. Anal Chem 84(2):669–684

    Article  CAS  Google Scholar 

  37. Millar J, Stamford JΑ, Kruk ZL, Wightman RM (1985) Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. Eur J Pharm 109:341–348

    Article  CAS  Google Scholar 

  38. Wipf DO, Kristensen EW, Deakin MR, Wightman RM (1988) Fast-scan cyclic voltammetry as a method to measure rapid heterogeneous electron-transfer kinetics. Anal Chem 60(4):306–310

    Article  CAS  Google Scholar 

  39. Perone SP, Kretlow WJ (1966) Application of controlled potential techniques to study of rapid succeeding chemical reaction coupled to electro-oxidation of ascorbic acid. Anal Chem 38(12):1760–1763

    Article  CAS  Google Scholar 

  40. Akkermans RP, Wu M, Bain CD, Fidel-Suarez M, Compton RG (1998) Electroanalysis of ascorbic acid: a comparative study of laser ablation voltammetry and sonovoltammetry. Electroanalysis 10(9):613–620

    Article  CAS  Google Scholar 

  41. Borsook H, Davenport HW, Jeffreys CEP, Warner RC (1937) The oxidation of ascorbic acid and its reduction in vivo and in vitro. J Biol Chem 117(1):237–279

    CAS  Google Scholar 

  42. Niwa O, Morita M, Tabei H (1991) Highly sensitive and selective voltammetric detection of dopamine with vertically separated interdigitated array electrodes. Electroanalysis 3(3):163–168

    Article  CAS  Google Scholar 

  43. Peng WF, Wang EK (1993) Preparation and characterization of a multicylinder microelectrode coupled with a conventional glassy-carbon electrode and Its application to the detection of dopamine. Anal Chim Acta 281(3):663–671

    Article  CAS  Google Scholar 

  44. Cullison JK, Waraska J, Buttaro DJ, Acworth IN, Bowers ML (1999) Electrochemical detection of catecholamines at sub-5 fg levels by redox cycling. J Pharm Biomed Anal 19(1–2):253–259

    Article  CAS  Google Scholar 

  45. Dam VAT, Olthuis W, van den Berg A (2007) Redox cycling with facing interdigitated array electrodes as a method for selective detection of redox species. Analyst 132(4):365–370

    Article  CAS  Google Scholar 

  46. Niwa O, Kurita R, Liu ZM, Horiuchi T, Torimitsue K (2000) Subnanoliter volume wall-jet cells combined with interdigitated microarray electrode and enzyme modified planar microelectrode. Anal Chem 72(5):949–955

    Article  CAS  Google Scholar 

  47. Niwa O, Morita M (1996) Carbon film-based interdigitated ring array electrodes as detectors in radial flow cells. Anal Chem 68(2):355–359

    Article  CAS  Google Scholar 

  48. Niwa O, Morita M, Tabei H (1994) Highly selective electrochemical detection of dopamine using interdigitated array electrodes modified with Nafion polyester ionomer layered film. Electroanalysis 6(3):237–243

    Article  CAS  Google Scholar 

  49. Vandaveer WR IV, Woodward DJ, Fritsch I (2003) Redox cycling measurements of a model compound and dopamine in ultrasmall volumes with a self-contained microcavity device. Electrochim Acta 48(20–22):3341–3348

    Article  CAS  Google Scholar 

  50. Niwa O, Tabei H (1994) Voltammetric measurements of reversible and quasi-reversible redox species using carbon-film based interdigitated array microelectrodes. Anal Chem 66(2):285–289

    Article  CAS  Google Scholar 

  51. Katelhon E, Hofmann B, Lemay SG, Zevenbergen MAG, Offenhausser A, Wolfrum B (2010) Nanocavity redox cycling sensors for the detection of dopamine fluctuations in microfluidic gradients. Anal Chem 82(20):8502–8509

    Article  CAS  Google Scholar 

  52. Liu ZM, Niwa O, Kurita R, Horiuchi T (2000) Carbon film-based interdigitated array microelectrode used in capillary electrophoresis with electrochemical detection. Anal Chem 72(6):1315–1321

    Article  CAS  Google Scholar 

  53. Zachek MK, Takmakov P, Park J, Wightman RM, McCarty GS (2010) Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. Biosens Bioelectron 25:1179–1185

    Article  CAS  Google Scholar 

  54. Huang XJ, O'Mahony AM, Compton RG (2009) Microelectrode arrays for electrochemistry: approaches to fabrication. Small 5(7):776–788

    Article  CAS  Google Scholar 

  55. Bruno JP, Gash C, Martin B, Zmarowski A, Pomerleau F, Burmeister J, Huettl P, Gerhardt GA (2006) Second-by-second measurement of acetylcholine release in prefrontal cortex. Eur J Neurosci 24(10):2749–2757

    Article  Google Scholar 

  56. Bruno JP, Sarter M, Gash C, Parikh V (2006) Choline- and acetylcholine-sensitive microelectrodes. Encyclopedia of sensors, vol 2. American Scientific Publishers, Valencia

    Google Scholar 

  57. Burmeister JJ, Pomerleau F, Huettl P, Gash CR, Wemer CE, Bruno JP, Gerhardt GA (2008) Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosens Bioelectron 23(9):1382–1389

    Article  CAS  Google Scholar 

  58. Zachek MK, Park J, Takmakov P, Wightman RM, McCarty GS (2010) Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. Analyst 135:1556–1563

    Article  CAS  Google Scholar 

  59. Sreenivas G, Ang S, Fritsch-Faules I, Brown WD, Gerhardt GA, Woodward DJ (1996) Fabrication and characterization of sputtered-carbon microelectrode arrays. Anal Chem 68:1858–1864

    Article  CAS  Google Scholar 

  60. Peters JL, Miner LH, Michael AC, Sesack SR (2004) Ultrastructure at carbon fiber microelectrode implantation sites after acute voltammetric measurements in the striatum of anesthetized rats. J Neurosci Methods 137(1):9–23

    Article  Google Scholar 

  61. Clapp-Lilly KL, Roberts RC, Duffy LK, Irons KP, Hu Y, Drew KL (1999) An ultrastructural analysis of tissue surrounding a microdialysis probe. J Neurosci Methods 90(2):129–142

    Article  CAS  Google Scholar 

  62. Mitala CM, Wang YX, Borland LM, Jung M, Shand S, Watkins S, Weber SG, Michael AC (2008) Impact of microdialysis probes on vasculature and dopamine in the rat striatum: a combined fluorescence and voltammetric study. J Neurosci Methods 174(2):177–185

    Article  CAS  Google Scholar 

  63. Zhou F, Zhu XW, Castellani RJ, Stimmelmayr R, Perry G, Smith MA, Drew KL (2001) Hibernation, a model of neuroprotection. Am J Pathol 158(6):2145–2151

    Article  CAS  Google Scholar 

  64. Michael AC, Borland LM, Mitala JJ, Willoughby BM, Motzko CM (2005) Theory for the impact of basal turnover on dopamine clearance kinetics in the rat striatum after medial forebrain bundle stimulation and pressure ejection. J Neurochem 94(5):1202–1211

    Article  CAS  Google Scholar 

  65. Burmeister JJ, Moxon K, Gerhardt GA (2000) Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem 72:187–192

    Article  CAS  Google Scholar 

  66. Burmeister JJ, Pomerleau F, Palmer M, Day BK, Huettl P, Gerhardt GA (2002) Improved ceramic-based multisite microelectrode for rapid measurements of L-glutamate in the CNS. J Neurosci Methods 119:163–171

    Article  CAS  Google Scholar 

  67. Kume-Kick J, Rice ME (1998) Dependence of dopamine calibration factors on media Ca2+ and M2+ at carbon-fiber microelectrodes used with fast-scan cyclic voltammetry. J Neurosci Methods 84:55–62

    Article  CAS  Google Scholar 

  68. Rice M, Nicholson C (1989) Measurement of nanomolar dopamine diffusion using low-noise perfluorinated ionomer coated carbon fiber microelectrodes and high-speed cyclic voltammetry. Anal Chem 61:1805–1810

    Article  CAS  Google Scholar 

  69. Wiedemann D, Kawagoe K, Kennedy R, Ciolkowski E, Wightman R (1991) Strategies for low detection limit measurements with cyclic voltammetry. Anal Chem 63:2965–2970

    Article  CAS  Google Scholar 

  70. Zachek MK, Hermans A, Wightman RM, McCarty GS (2008) Electrochemical dopamine detection: comparing gold and carbon fiber microelectrodes using background subtracted fast scan cyclic voltammetry. J Electroanal Chem 614(1):113–120

    Article  CAS  Google Scholar 

  71. Aggarwal A (2011) Studies toward the development of a microelectrode array for detection of dopamine through redox cycling. PhD thesis, University of Arkansas, Fayetteville

  72. Bard AJ, Crayston JA, Kittlesen GP, Shea TV, Wrighton MS (1986) Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays: consequences arising from closely spaced ultramicroelectrodes. Anal Chem 58(11):2321–2331

    Article  CAS  Google Scholar 

  73. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  74. Lu Y, Peters JL, Michael AC (1998) Direct comparison of the response of voltammetry and microdialysis to electrically evoked release of striatal dopamine. J Neurochem 70(2):584–593

    Article  CAS  Google Scholar 

  75. Amatore C, Kelly RS, Kristensen EW, Kuhr WG, Wightman RM (1986) Effects of restricted diffusion at ultramicroelectrodes in brain tissue: the pool model: theory and experiment for chronoamperometry. J Electroanal Chem 213(1):31–42

    Article  CAS  Google Scholar 

  76. Aoki K, Morita M, Niwa, Tabei H (1988) Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions. J Electroanal Chem 256:269–282

    Article  CAS  Google Scholar 

  77. Hawley MD, Tatawawa S, Piekarsk S, Adams RN (1967) Electrochemical studies of oxidation pathways of catecholamines. J Am Chem Soc 89(2):447–450

    Article  CAS  Google Scholar 

  78. Ciolkowski EL, Cooper BR, Jankowski JA, Jorgenson JW, Wightman RM (1992) Direct observation of epinephrine and norepinephrine cosecretion from individual adrenal-medullary chromaffin cells. J Am Chem Soc 114(8):2815–2821

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided in part by the National Science Foundation (CHE-0719097) and the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000. We thank Errol Porter for advice on microfabrication. The use of the High Density Electronics Center microfabrication facilities is also acknowledged. We express our appreciation to Adrian Michael of the University of Pittsburgh for insightful discussions about applications. T.S. Hollingsworth is acknowledged for assistance in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Fritsch.

Additional information

Published in the topical collection Bioelectroanalysis with guest editors Nicolas Plumeré, Magdalena Gebala, and Wolfgang Schuhmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, A., Hu, M. & Fritsch, I. Detection of dopamine in the presence of excess ascorbic acid at physiological concentrations through redox cycling at an unmodified microelectrode array. Anal Bioanal Chem 405, 3859–3869 (2013). https://doi.org/10.1007/s00216-013-6738-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6738-z

Keywords

Navigation