Skip to main content
Log in

Effervescence-assisted carbon nanotubes dispersion for the micro-solid-phase extraction of triazine herbicides from environmental waters

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Extraction techniques are surface-dependent processes since their kinetic directly depends on the contact area between the sample and the extractant phase. The dispersion of the extractant (liquid or solid) increases this area improving the extraction efficiency. In this article, the dispersion of a nanostructured sorbent at the very low milligram level is achieved by effervescence thanks to the in situ generation of carbon dioxide. For this purpose, a special tablet containing the effervescence precursors (sodium carbonate as carbon dioxide source and sodium dihydrogen phosphate as proton donor) and the sorbent [multiwalled carbon nanotubes (MWCNTs)] is prepared. All the microextraction steps take place in a glass beaker containing 100 mL of the sample. After the extraction, the MWCNTs, enriched with the extracted analytes, are recovered by vacuum filtration. Methanol was selected to elute the retained analytes. The extraction mode is optimized and characterized using the determination of nine herbicides in water samples as model analytical problem. The absolute recoveries of the analytes were in the range 48–76 %, while relative recoveries were close to 100 % in all cases. These values permit the determination of these analytes at the low microgram per liter range with good precision (relative standard deviations lower than 9.3 %) using ultra performance liquid chromatography (UPLC) combined with ultraviolet detection (UV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pyrzynska K (2008) Sep Purif Rev 37:372–389

    Article  CAS  Google Scholar 

  2. Valcárcel M, Cárdenas S, Simonet BM (2007) Anal Chem 79:4788–4797

    Article  Google Scholar 

  3. Raveló-Perez LM, Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MA (2010) J Chromatogr A 1217:2618–2641

    Article  Google Scholar 

  4. Ballesteros E, Gallego M, Valcárcel M (2000) J Chromatogr A 869:101–110

    Article  CAS  Google Scholar 

  5. Serrano A, Gallego M (2006) J Sep Sci 29:33–40

    Article  CAS  Google Scholar 

  6. Chen WH, Lee SC, Sabu S, Fang HC, Chung SC, Han CC, Chang HC (2006) Anal Chem 78:4228–4234

    Article  CAS  Google Scholar 

  7. Wang Y, Gao S, Zang X, Li J, Ma J (2012) Anal Chim Acta 716:112–118

    Article  CAS  Google Scholar 

  8. Jiménez-Soto JM, Cárdenas S, Valcárcel M (2009) J Chromatogr A 1216:5626–5633

    Article  Google Scholar 

  9. Jiménez-Soto JM, Cárdenas S, Valcárcel M (2010) J Chromatogr A 1217:3341–3347

    Article  Google Scholar 

  10. Jiménez-Soto JM, Moliner-Martinez Y, Cárdenas S, Valcárcel M (2010) Electrophoresis 31:1681–1688

    Article  Google Scholar 

  11. Jiménez-Soto JM, Cárdenas S, Valcárcel M (2012) Anal Chim Acta 714:76–8

    Article  Google Scholar 

  12. Ijima S (1991) Nature 354:56–58

    Article  Google Scholar 

  13. Cho HH, Smith BA, Wnuk JD, Fairbrother DH, Ball WP (2008) Environ Sci Technol 42:2899–2905

    Article  CAS  Google Scholar 

  14. Cai Y, Jiang G, Liu F, Zhou Q (2003) Anal Chem 75:2517–2521

    Article  CAS  Google Scholar 

  15. Cruz-Vera M, Lucena R, Cárdenas S, Valcárcel M (2009) Anal Bioanal Chem 391:1139–1145

    Article  Google Scholar 

  16. Carrillo-Carrión C, Lucena R, Cárdenas S, Valcárcel M (2007) Analyst 132:551–559

    Google Scholar 

  17. Menna E, Della Negra F, Prato M, Tagmatarchis N, Ciogli A, Gasparrini F, Misita D, Villani C (2006) Carbon 44:1609–1613

    Article  CAS  Google Scholar 

  18. Suarez B, Moliner-Martínez Y, Cárdenas S, Simonet B, Valcárcel M (2008) Environ Sci Technol 42:6100–6104

    Article  CAS  Google Scholar 

  19. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) J AOAC Int 86:412–431

    CAS  Google Scholar 

  20. Alcudia-León MC, Lucena R, Cárdenas S, Valcárcel M (2009) Anal Chem 81:1184–1190

    Article  Google Scholar 

  21. Wang Y, Iqbal Z, Malhotra SV (2005) Chem Phys Lett 402:96–101

    Article  CAS  Google Scholar 

  22. Jiang L, Gao L, Sun J (2003) J Colloid Interface Sci 260:89–94

    Article  CAS  Google Scholar 

  23. O'Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E (2001) Chem Phys Lett 342:265–271

    Article  Google Scholar 

  24. Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R (2002) Nano Lett 2:25–28

    Article  CAS  Google Scholar 

  25. O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge H, Weisman RB, Smalley RE (2002) Science 297:593–596

    Article  Google Scholar 

  26. Lu KL, Lago RM, Chen YK, Green MLH, Harris PJF, Tsang SC (1996) Carbon 34:814–816

    Article  CAS  Google Scholar 

  27. Pyrzynska K (2011) Chemosphere 83:1407–1413

    Article  CAS  Google Scholar 

  28. Jiménez-Soto JM, Cárdenas S, Valcárcel M (2012) J Chromatogr A 1245:17–23

    Article  Google Scholar 

  29. Gebel T, Kevekordes S, Pav K, Edenharder R, Dunkelberg H (1997) Arch Toxicol 71:193–197

    Article  CAS  Google Scholar 

  30. Kniewald J, Jakominic M, Tomljenovic A, Simic B, Romac P, Vranesic P, Kniewald Z (2000) J Appl Toxicol 20:61–68

    Article  CAS  Google Scholar 

  31. Jiang H, Adams C, Graziano N, Roberson A, McGuire M, Khiari D (2006) Environ Sci Technol 40:3609–3616

    Article  CAS  Google Scholar 

  32. LeBaron HM, McFarland JE, Burnside OC (2008) The triazine herbicides. Elsevier, San Diego

    Google Scholar 

  33. Ma WT, Fu KK, Cai Z, Jiang GB (2003) Chemosphere 52:1627–1632

    Article  CAS  Google Scholar 

  34. Wu Q, Feng C, Zhao G, Wang C, Wang Z (2012) J Sep Sci 35:193–199

    Article  Google Scholar 

  35. Huff TB, Foster GD (2011) J Environ Sci Health B 46:723–734

    Article  CAS  Google Scholar 

  36. Cabrías-Martinez R, Rodriguez-Gonzalo E, Miranda-Cruz E, Dominguez-Alvarez J, Hernandez-Mendez J (2006) J Chromatogr A 1122:194–201

    Article  Google Scholar 

  37. Zhou Q, Xiao J, Wang W, Liu G, Shi Q, Wang J (2006) Talanta 68:1309–1315

    Article  CAS  Google Scholar 

  38. Lasarte-Aragones G, Lucena R, Cardenas S, Valcarcel M (2011) J Chromatogr A 1218:9128–9134

    Article  CAS  Google Scholar 

  39. US Environmental Protection Agency, Office of Solid Waste (1996) EPA Method 8330, SW-846. Available from NTIS

  40. Smith GA, Pepich BV, Munch DJ (2008) J Chromatogr A 1202:138–144

    Article  CAS  Google Scholar 

  41. Shang-Da H, Hsin-I H, Yu-Hsiang S (2004) Talanta 64:887–893

    Article  Google Scholar 

  42. Katsumata H, Kojima H, Kaneco S, Suzuki T, Ohta K (2010) Microchem J 96:348–351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministry of Science and Innovation (grant CTQ2011-23790) is gratefully acknowledged. G. Lasarte-Aragonés would like to express his gratitude for the predoctoral grant (ref. AP2009-2850) from the Spanish Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Valcárcel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 156 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasarte-Aragonés, G., Lucena, R., Cárdenas, S. et al. Effervescence-assisted carbon nanotubes dispersion for the micro-solid-phase extraction of triazine herbicides from environmental waters. Anal Bioanal Chem 405, 3269–3277 (2013). https://doi.org/10.1007/s00216-013-6718-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6718-3

Keywords

Navigation