Skip to main content
Log in

Populus nigra L. bud absolute: a case study for a strategy of analysis of natural complex substances

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The new European regulations (e.g., REACH) require that Natural Complex Substances such as essential oils, absolutes, concretes, and resinoids are registered. This need implies that the chemical composition of these complex mixtures is characterized as exhaustively as possible in view of defining their toxicological risk. This study proposes an analysis strategy to be applied to the chemical characterization of poplar absolute as an example of Natural Complex Substances of vegetable origin. In the first part, the proposed strategy is described, and the advantages and the limitations related to the combination of conventional analytical techniques such as gas chromatography (GC) without and with sample derivatization and high-performance liquid chromatography (HPLC) are critically discussed. In the second part, the qualitative data obtained with GC and HPLC analysis of poplar bud absolute confirm the sample complexity which mainly consists of phenolic components. Fourteen compounds (i.e., phenolic acids, phenylpropanoids, and flavonoids) were then chosen as markers representative of the main classes of components characterizing poplar bud absolute. The marker quantitation carried out by GC-SIM-MS and HPLC-PDA analyses gives similar results confirming the reliability of both techniques. These results demonstrate that conventional analytical techniques can positively and effectively contribute to the study of the the composition of Natural Complex Substances, i.e., matrices for which highly effective separation is necessary, consisting mainly of isomers or homologous components. The combination of GC and HPLC techniques is ever more necessary for routine quality control when conventional instrumentations are used.

Elucidation of Natural Complex Substances (NCS)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ellis G (2010) Special Issue 40th ISEO: toxicological challenges for essential oils in REACH. Flavour Fragr J 25:138–144

    Article  CAS  Google Scholar 

  2. ISO Norm: 9235 (1997) Aromatic natural raw material—vocabulary

  3. Fernandez X, Pintaric C, Lizzani-Cuvelier L, Loiseau AM, Morello A, Pellerin P (2006) Chemical composition of absolute and supercritical carbon dioxide extract of Aframomum melegueta. Flavour Fragr J 21:162–165

    Article  CAS  Google Scholar 

  4. Perriot R, Breme K, Meierhenrich UJ, Carenini E, Ferrando G, Baldovini N (2010) Chemical composition of French mimosa absolute oil. J Agric Food Chem 58:1844–1849

    Article  CAS  Google Scholar 

  5. Da Cunha FM, Duma D, Assreuy J, Buzzi FC, Niero R, Campos MM, Calixto JB (2004) Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties. Free Radic Res 38:1241–1253

    Article  Google Scholar 

  6. Dudonne S, Poupard P, Coutiere P, Woillez M, Richard T, Merillon JM, Vitrac X (2011) Phenolic composition and antioxidant properties of poplar Bud (Populus nigro) extract: individual antioxidant contribution of phenolics and transcriptional effect on skin aging. J Agric Food Chem 59:4527–4536

    Article  CAS  Google Scholar 

  7. Echenwalder J (1996) Systematic and evolution of Populus. Biology of Populus and its implications for management and conservation, Part 1. NRC Research Press, National Research Council of Canada, Ottawa

    Google Scholar 

  8. Greenaway W, May J, Scaysbrook T, Whatley FR (1992) Composition of bud and leaf exudates of some Populus species compared. Z Naturforsch C 47:329–334

    CAS  Google Scholar 

  9. Greenaway W, Whatley FR (1991) Synthesis of esters of acetyloxycaffeic acids and their occurrence in poplar bud exudates. J Chromatogr 543:113–121

    Article  CAS  Google Scholar 

  10. Jerkovic I, Mastelic J (2003) Volatile compounds from leaf-buds of Populus nigra L. (Salicaceae). Phytochemistry 63:109–113

    Article  CAS  Google Scholar 

  11. Mattes B, Clausen TP, Reichardt PB (1987) Volatile constituents of balsam poplar: the phenol glycoside connection. Phytochemistry 26:1361–1366

    Article  CAS  Google Scholar 

  12. Isidorov VA, Vinogorova VT (2003) GC-MS analysis of compounds extracted from buds of Populus balsamifera and Populus nigra. Z Naturforsch 58:355–360

    CAS  Google Scholar 

  13. Greenaway W, Wollenweber E, Scaysbrook T, Whatley FR (1988) Esters of caffeic acid with aliphatic alcohols in bud exudate of Populus nigra. Z Naturforsch C 43:795–798

    CAS  Google Scholar 

  14. Maciejewicz W, Daniewski M, Dzido TH, Bal K (2002) GC-MS and HPLC analysis of phenolic acids extracted from propolis and from Populus nigra bud exudate. Chem Anal (Warsaw) 47:21–30

    CAS  Google Scholar 

  15. Adams R (2007) Identification of essential oil component by gas chromatography/mass spectrometry, 4th edn. Allured, Carol Stream

    Google Scholar 

  16. Isidorov VA, Isidorova AG, Scmepaniak L, Czyewska U (2009) Gas chromatographic-mass spectrometric investigation of the chemical composition of beebread. Food Chem 115:1056–1063

    Article  CAS  Google Scholar 

  17. Isidorov VA, Smolewska M, Purzynska-Pugacewicz A, Tyszkiewicz Z (2010) Chemical composition of volatile and extractive compounds of pine and spruce leaf litter in the initial stages of decomposition. Biogeosciences 7:2785–2794

    Article  CAS  Google Scholar 

  18. Isidorov VA, Szczepaniak L (2009) Gas chromatographic retention indices of biologically and environmentally important organic compounds on capillary columns with low-polar stationary phases. J Chromatogr A 1216:8998–9007

    Article  CAS  Google Scholar 

  19. Boldizsar I, Kraszni M, Toth F, Noszal B, Molnar-Perl I (2010) Complementary fragmentation pattern analysis by gas chromatography–mass spectrometry and liquid chromatography tandem mass spectrometry confirmed the precious lignan content of Cirsium weeds. J Chromatogr A 1217:6281–6289

    Article  CAS  Google Scholar 

  20. Boldizsar I, Szucs Z, Fuzfai Z, Molnar-Perl I (2006) Identification and quantification of the constituents of madder root by gas chromatography and high-performance liquid chromatography. J Chromatogr A 1133:259–274

    Article  CAS  Google Scholar 

  21. Boldizsar L, Fuzfai Z, Toth F, Sedlak E, Borsodi L, Molnar-Perl I (2010) Mass fragmentation study of the trimethylsilyl derivatives of arctiin, matairesinoside, arctigenin, phylligenin, matairesinol, pinoresinol and methylarctigenin: their gas and liquid chromatographic analysis in plant extracts. J Chromatogr A 1217:1674–1682

    Article  CAS  Google Scholar 

  22. Markham KR, Mitchell KA, Wilkins AL, Daldy JA, Lu YR (1996) HPLC and GC-MS identification of the major organic constituents in New Zealand propolis. Phytochemistry 42:205–211

    Article  CAS  Google Scholar 

  23. Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243

    Article  CAS  Google Scholar 

  24. Fiehn O (2008) Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. TrAC Trend Anal Chem 27:261–269

    Article  CAS  Google Scholar 

  25. Costa R, Zellner BD, Crupi ML, De Fina MR, Valentino MR, Dugo P, Dugo G, Mondello L (2008) GC-MS, GC-O and enantio-GC investigation of the essential oil of Tarchonanthus camphoratus L. Flavour Fragr J 23:40–48

    Article  CAS  Google Scholar 

  26. Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr 11:463–471

    Article  Google Scholar 

  27. Van den Dool H (1974) (Groeningen (The Netherlands)) Standardisation of gas chromatographic analysis of essential oils. PhD thesis, University of Groeningen

  28. Zellner BD, Bicchi C, Dugo P, Rubiolo P, Dugo G, Mondello L (2008) Linear retention indices in gas chromatographic analysis: a review. Flavour Fragr J 23:297–314

    Article  Google Scholar 

  29. Eugster P, Guillarme D, Rudaz S, Veuthey J, Carrupt P, Wolfender J (2011) Ultrahigh pressure liquid chromatography for crude plant extract profiling. J AOAC Int 94:51–70

    CAS  Google Scholar 

  30. Wolfender J, Eugster PJ, Bohni N, Cuendet M (2011) Advanced methods for natural product drug discovery in the field of nutraceuticals. Chimia 65:400–406

    Article  CAS  Google Scholar 

  31. Greenaway W, English S, Whatley FR (1990) Variation in bud exudate composition of Populus nigra assessed by gas chromatography–mass spectrometry. Z Naturforsch C 45:931–936

    CAS  Google Scholar 

  32. Greenaway W, Whatley FR (1990) Resolution of complex mixtures of phenolics in poplar bud exudate by analysis of gas chromatography–mass spectrometry data. J Chromatogr 519:145–158

    Article  CAS  Google Scholar 

  33. Morreel K, Goeminne G, Storme V, Sterck L, Ralph J, Coppieters W, Breyne P, Steenackers M, Georges M, Messens E, Boerjan W (2006) Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. Plant J 47:224–237

    Article  CAS  Google Scholar 

  34. Bankova VS, Popov SS, Marekov NL (1989) Isopentenyl cinnamates from poplar buds and propolis. Phytochemistry 28:871–873

    Article  CAS  Google Scholar 

  35. Greenaway W, Wollenweber E, Scaysbrook T, Whatley FR (1988) Novel isoderulate esters identified by gas chromatography–mass spectrometry in bud exudate of Populus nigra. J Chromatogr 448:284–290

    Article  CAS  Google Scholar 

  36. Gardana C, Scaglianti M, Pietta P, Simonetti P (2007) Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography–tandem mass spectrometry. J Pharm Biomed 45:390–399

    Article  CAS  Google Scholar 

  37. Pellati F, Orlandini G, Pinetti D, Benvenuti S (2011) HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. J Pharm Biomed 55:934–948

    Article  CAS  Google Scholar 

  38. Kind T, Fiehn O (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinforma 8:105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Rubiolo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 933 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubiolo, P., Casetta, C., Cagliero, C. et al. Populus nigra L. bud absolute: a case study for a strategy of analysis of natural complex substances. Anal Bioanal Chem 405, 1223–1235 (2013). https://doi.org/10.1007/s00216-012-6537-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6537-y

Keywords

Navigation