Skip to main content
Log in

Mechanical characterization of polymeric thin films by atomic force microscopy based techniques

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polymeric thin films have been awakening continuous and growing interest for application in nanotechnology. For such applications, the assessment of their (nano)mechanical properties is a key issue, since they may dramatically vary between the bulk and the thin film state, even for the same polymer. Therefore, techniques are required for the in situ characterization of mechanical properties of thin films that must be nondestructive or only minimally destructive. Also, they must also be able to probe nanometer-thick ultrathin films and layers and capable of imaging the mechanical properties of the sample with nanometer lateral resolution, since, for instance, at these scales blends or copolymers are not uniform, their phases being separated. Atomic force microscopy (AFM) has been proposed as a tool for the development of a number of techniques that match such requirements. In this review, we describe the state of the art of the main AFM-based methods for qualitative and quantitative single-point measurements and imaging of mechanical properties of polymeric thin films, illustrating their specific merits and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S et al (2006) Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys 100:051606

    Article  CAS  Google Scholar 

  2. Ozaydin-Ince G, Coclite AM, Gleason KK (2012) CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Rep Prog Phys 75:016501

    Article  CAS  Google Scholar 

  3. Tsui OKC, Russell TP (eds) (2008) Polymer thin films. World Scientific

  4. Tamburri E, Orlanducci S, Guglielmotti V, Reina G, Rossi M, Terranova ML (2011) Engineering detonation nanodiamond - Polyaniline composites by electrochemical routes: structural features and functional characterizations. Polymer 52:5001–5008

    Google Scholar 

  5. Tamburri E, Sarti S, Orlanducci S, Terranova ML, Rossi M (2011) Study of PEDOT conductive polymer films by admittance measurements. Mat Chem Phys 125:397–404

    Article  CAS  Google Scholar 

  6. Dokukin ME, Sokolov I (2012) On the measurements of rigidity modulus of soft materials in nanoindentation experiments at small depth. Macromolecules 45:4277–4288

    Article  CAS  Google Scholar 

  7. Torres JM, Stafford CM, Vogt BD (2009) Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature. ACS Nano 3:2677–2685

    Article  CAS  Google Scholar 

  8. Mansfield KF, Theodorou DN (1991) Molecular dynamics simulation of a glassy polymer surface. Macromolecules 24:6283–6294

    Article  CAS  Google Scholar 

  9. Torres JM, Stafford CM, Vogt BD (2010) Manipulation of the elastic modulus of polymers at the nanoscale: influence of UV-ozone cross-linking and plasticizer. ACS Nano 4:5357–5365

    Article  CAS  Google Scholar 

  10. Huang R, Stafford CM, Vogt BD (2007) Effect of surface properties on wrinkling of ultrathin films. J Aerosp Eng 20:38–44

    Article  Google Scholar 

  11. Miyake K, Satomi N, Sasaki S (2006) Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy. Appl Phys Lett 89:031925

    Article  CAS  Google Scholar 

  12. Keddie JL, Jones RAL, Cory RA (1994) Size-dependent depression of the glass transition temperature in polymer films. Europhys Lett 27:59–64

    Article  CAS  Google Scholar 

  13. Torres JM, Wang C, Coughlin EB, Bishop JP, Register RA, Riggleman RA et al (2011) Influence of chain stiffness on thermal and mechanical properties of polymer thin films. Macromolecules 44:9040–9045

    Article  CAS  Google Scholar 

  14. Johnson LL, Eby RK, Meador MAB (2003) Investigation of oxidation profile in PMR-15 polyimide using atomic force microscope (AFM). Polymer 44:187–197

    Article  CAS  Google Scholar 

  15. Lubarsky GV, Davidson MR, Bradley RH (2004) Elastic modulus, oxidation depth and adhesion force of surface modified polystyrene studied by AFM and XPS. Surf Sci 558:135–144

    Article  CAS  Google Scholar 

  16. Fasce L, Cura J, del Grosso M, García Bermúdez G, Frontini P (2010) Effect of nitrose ion irradiation on the nano-tribological and surface mechanical properties of ultra-high molecular weight polyethylene. Surf Coat Technol 204:3887–3894

    Article  CAS  Google Scholar 

  17. Švorčík V, Kotál V, Slepička P, Bláhová O, Špírková M, Sajdl P et al (2006) Modification of surface properties of polyethylene by Ar plasma discharge. Nucl Instrum Methods B 244:365–372

    Article  CAS  Google Scholar 

  18. Fisher GL, Lakis RE, Davis CC, Szakal C, Swadener JG, Wetteland CJ et al (2006) Mechanical properties and the evolution of matrix molecules in PTFE upon irradiation with MeV alpha particles. Appl Surf Sci 253:1330–1342

    Article  CAS  Google Scholar 

  19. Guenther M, Gerlach G, Suchaneck G, Sahre K, Eichhorn KJ, Baturin V et al (2004) Physical properties and structure of thin ion-beam modified polymer films. Nucl Instrum Methods B 216:143–148

    Article  CAS  Google Scholar 

  20. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  21. Ton-That C, Shard AG, Teare DOH, Bradley RH (2001) XPS and AFM surface studies of solvent-cast PS/PMMA blends. Polymer 42:1121–1129

    Article  CAS  Google Scholar 

  22. Cyganik P, Budkowski A, Raczkowska J, Postawa Z (2002) AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self-assembled monolayer. Surf Sci 507–510:700–706

    Article  Google Scholar 

  23. Bhushan B, Israelachvili JN, Landman U (1995) Nanotribology: friction, wear and lubrication at the atomic scale, nanomechanics and nanomaterials characterization. Nature 374:607–616

    Article  CAS  Google Scholar 

  24. Bhushan B (2008) Nanotribology, nanomechanics and nanomaterials characterization. Philos Trans R Soc A 366:1351–1381

    Article  CAS  Google Scholar 

  25. Senden TJ, Ducker WA (1994) Experimental determination of spring constants in atomic force microscopy. Langmuir 10:1003–1004

    Article  Google Scholar 

  26. Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405

    Article  CAS  Google Scholar 

  27. Sader JE, Larson I, Mulvaney P, White LR (1995) Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum 66:3789–3798

    Article  CAS  Google Scholar 

  28. Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969

    Article  CAS  Google Scholar 

  29. Green CP, Lioe H, Cleveland JP, Proksch R, Mulvaney P, Sader JE (2004) Normal and torsional spring constants of atomic force microscope cantilevers. Rev Sci Instrum 75:1988–1996

    Article  CAS  Google Scholar 

  30. Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34:1–104

    Article  CAS  Google Scholar 

  31. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152

    Article  CAS  Google Scholar 

  32. Weisenhorn AL, Khorsandi M, Kasas S, Gotzos V, Butt HJ (1993) Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4:106–113

    Article  CAS  Google Scholar 

  33. Tsukruk VV, Huang Z, Chizhik SA, Gorbunov VV (1998) Probing of micromechanical properties of compliant polymeric materials. J Mater Sci 33:4905–4909

    Article  CAS  Google Scholar 

  34. Domke J, Radmacher M (1998) Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14:3320–3325

    Article  CAS  Google Scholar 

  35. Reynaud C, Sommer F, Quet C, El Buonia N, Tran Minh D (2000) Quantitative determination of Young’s modulus on a biphase polymer system using atomic force microscopy. Surf Interface Anal 30:185–189

    Article  CAS  Google Scholar 

  36. Tomasetti E, Legras R, Nysten B (1998) Quantitative approach towards the measurement of polypropylene/(ethylene-propylene) copolymer blends surface elastic properties by AFM. Nanotechnology 9:305–315

    Article  CAS  Google Scholar 

  37. Clifford CA, Seah MP (2005) Quantification issues in the identification of nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation. Appl Surf Sci 252:1915–1933

    Article  CAS  Google Scholar 

  38. Du B, Tsui OKC, Zhang Q, He T (2001) Study of elastic modulus and yield strength of polymer thin films using atomic force microscopy. Langmuir 17:3286–3291

    Article  CAS  Google Scholar 

  39. Passeri D, Alippi A, Bettucci A, Rossi M, Alippi A, Tamburri E et al (2011) Indentation modulus and hardness of polyaniline thin films by atomic force microscopy. Synth Met 161:7–12

    Article  CAS  Google Scholar 

  40. Kovalev A, Shulha H, Lemieux M, Myshkin N, Tsukruk VV (2004) Nanomechanical probing of layered nanoscale polymer films with atomic force microscopy. J Mater Res 19:716–728

    Article  CAS  Google Scholar 

  41. Tranchida D, Piccarolo S, Soliman M (2006) Nanoscale mechanical characterization of polymers by AFM nanoindentations: critical approach to elastic characterization. Macromolecules 39:4547–4556

    Article  CAS  Google Scholar 

  42. Passeri D, Bettucci A, Biagioni A, Rossi M, Alippi A, Tamburri E et al (2009) Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: a case study. Ultramicroscopy 109:1417–1427

    Article  CAS  Google Scholar 

  43. Tranchida D, Piccarolo S, Loos J, Alexeev A (2007) Mechanical characterization of polymers on a nanometer scale through nanoindentation. A study on pile-up and viscoelasticity. Macromolecules 40:1259–1267

    Article  CAS  Google Scholar 

  44. Bykov V, Gologanov A, Shevyakov V (1998) Test structure for SPM tip shape deconvolution. Appl Phys A 66:499–502

    Article  CAS  Google Scholar 

  45. Passeri D, Bettucci A, Biagioni A, Rossi M, Alippi A, Lucci M et al (2008) Quantitative measurement of indentation hardness and modulus of compliant materials by atomic force microscopy. Rev Sci Instrum 79:066105

    Article  CAS  Google Scholar 

  46. Bhushan B, Koinkar VN (1994) Nanoindentation hardness measurements using atomic force microscopy. Appl Phys Lett 64:1653–1655

    Article  CAS  Google Scholar 

  47. Vanlandingham MR (1997) The effect of instrumental uncertainties on AFM indentation measurements. Microsc Today 5:12–15

    Google Scholar 

  48. Huang L, Meyer C, Prater C (2007) Eliminating lateral forces during AFM indentation. J Phys Conf Ser 61:805–809

    Article  Google Scholar 

  49. Cappella B (2011) Mechanical properties and adhesion of a micro structured polymer blend. Polymers 3:1091–1106

    Article  CAS  Google Scholar 

  50. Zhao J, Chen M, An Y, Liu J, Yan F (2008) Preparation of polystyrene brush film by radical chain-transfer polymerization and micromechanical properties. Appl Surf Sci 255:2295–2302

    Article  CAS  Google Scholar 

  51. Ganguly A, Bhowmick AK (2009) Quantification of surface forces of thermoplastic elastomeric nanocomposites based on poly(styreneethylene-co-butylene-styrene) and clay by atomic force microscopy. Appl Surf Sci 111:2104–2115

    Article  CAS  Google Scholar 

  52. Kim KS, Wang H, Zou Q (2009) High speed force-volume mapping using atomic force microscope. In: American Control Conference, 2009. ACC’09. pp 991–996

  53. van der Werf KO, Putman CAJ, de Grooth BG, Greve J (1994) Adhesion force imaging in air and liquid by adhesion mode atomic force microscopy. Appl Phys Lett 29:1195–1197

    Article  Google Scholar 

  54. Fang TH, Wu CD, Kang SH (2011) Thermomechanical properties of polymer nanolithography using atomic force microscopy. Micron 42:492–497

    Article  CAS  Google Scholar 

  55. Kienberger F, Ebner A, Gruber HJ, Hinterdorfer P (2006) Molecular recognition imaging and force spectroscopy of single biomolecules. Acc Chem Res 39:29–36

    Article  CAS  Google Scholar 

  56. Dupres V, Verbelen C, Dufrene YF (2007) Probing molecular recognition sites on biosurfaces using AFM. Biomaterials 28:2393–2402

    Article  CAS  Google Scholar 

  57. Creasey R, Sharma S, Gibson CT, Craig JE, Ebner A, Becker T et al (2011) Atomic force microscopy-based antibody recognition imaging of proteins in the pathological deposits in pseudoexfoliation syndrome. Ultramicroscopy 111:1055–1061

    Article  CAS  Google Scholar 

  58. Maivald P, Butt HJ, Gould SA, Prater CB, Drake B, Gurley JA et al (1991) Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2:103–106

    Article  Google Scholar 

  59. Nie HY, Motomatsu M, Mizutani W, Tokumoto H (1996) Local elasticity measurement on polymers using atomic force microscopy. Thin Solid Films 273:143–148

    Article  CAS  Google Scholar 

  60. Sheiko SS. Imaging of polymers using scanning force microscopy: from superstructures to individual molecules. In: Schmidt M (ed) Advances in polymer science (200) volume 151, New developments in polymer analytics II. pp 61–174. doi:10.1007/3-540-48763-8_2

  61. McGuiggan PM, Yarusso DJ (2004) Measurement of the loss tangent of a thin polymeric film using the atomic force microscope. J Mater Res 19:387–395

    Article  CAS  Google Scholar 

  62. Le Rouzic J, Vairac P, Cretin B, Delobelle P (2008) Sensitivity optimization of the scanning microdeformation microscope and application to mechanical characterization of soft materials. Rev Sci Instrum 79:033707

    Article  CAS  Google Scholar 

  63. Le Rouzic J, Delobelle P, Vairac P, Cretin B (2009) Comparison of three different scales techniques for the dynamic mechanical characterization of two polymers (PDMS and SU8). Eur Phys J Appl Phys 48:11201

    Article  CAS  Google Scholar 

  64. Cretin B, Sthal F (1996) Scanning microdeformation microscopy. Appl Phys Lett 62:829–831

    Article  Google Scholar 

  65. Robert L, Cretin B (1999) Determination of the observation depth in scanning microdeformation microscopy. Surf Interface Anal 27:568–571

    Article  CAS  Google Scholar 

  66. Vairac P, Cretin B (1999) Electromechanical resonator in scanning microdeformation microscopy: theory and experiment. Surf Interface Anal 27:588–591

    Article  CAS  Google Scholar 

  67. Huey BD (2007) AFM and acoustics: fast, quantitative nanomechanical mapping. Annu Rev Mater Res 37:351–385

    Article  CAS  Google Scholar 

  68. Rabe U, Arnold W (1994) Acoustic microscopy by atomic force microscopy. Appl Phys Lett 64:1493–1495

    Article  Google Scholar 

  69. Rabe U, Scherer V, Hirsekorn S, Arnold W (1997) Nanomechanical surface characterization by atomic force acoustic microscopy. J Vac Sci Technol B 15:1506–1511

    Article  CAS  Google Scholar 

  70. Rabe U, Amelio S, Kopycinska M, Hirsekorn S, Kempf M, Göken M et al (2002) Imaging and measurement of local mechanical material properties by atomic force acoustic microscopy. Surf Interface Anal 33:65–70

    Article  CAS  Google Scholar 

  71. Rabe U, Amelio S, Kester E, Scherer V, Hirsekorn S, Arnold W (2000) Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38:430–437

    Article  CAS  Google Scholar 

  72. Yamanaka K, Nakano S (1996) Ultrasonic atomic force microscope with overtone excitation of cantilever. Jpn J Appl Phys Part 1 35:3787–3792

    Article  CAS  Google Scholar 

  73. Yamanaka K, Noguchi A, Tsuji T, Koike T, Goto T (1999) Quantitative material characterization by ultrasonic AFM. Surf Interface Anal 27:600–606

    Article  CAS  Google Scholar 

  74. Banerjee S, Gayathri N, Dash S, Tyagi AK, Raj B (2005) A comparative study of contact resonance imaging using atomic force microscopy. Appl Phys Lett 86:211913

    Article  CAS  Google Scholar 

  75. Yamanaka K, Kobari K, Tsuji T (2008) Evaluation of functional materials and devices using atomic force microscopy with ultrasonic measurements. Jpn J Appl Phys 47:6070–6076

    Article  CAS  Google Scholar 

  76. Rabe U, Hirsekorn S, Reinstädtler M, Sulzbach T, Lehrer C, Arnold W (2007) Influence of the cantilever holder on the vibrations of AFM cantilevers. Nanotechnology 18:044008

    Article  CAS  Google Scholar 

  77. Schwarz K, Rabe U, Hirsekorn S, Arnold W (2008) Excitation of atomic force microscope cantilever vibrations by a Schottky barrier. Appl Phys Lett 92:183105

    Article  CAS  Google Scholar 

  78. Hurley DC, Kopycinska-Müller M, Kos AB, Geiss RH (2005) Quantitative elastic-property measurements at the nanoscale with atomic force acoustic microscopy. Adv Eng Mater 7:713–718

    Article  CAS  Google Scholar 

  79. Hurley DC, Kopycinska-Müller M, Kos AB, Geiss RH (2005) Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods. Meas Sci Technol 16:2167–2172

    Article  CAS  Google Scholar 

  80. Passeri D, Bettucci A, Germano M, Rossi M, Alippi A, Sessa V et al (2006) Local indentation modulus characterization of diamond-like carbon films by atomic force acoustic microscopy two contact resonance frequencies imaging technique. Appl Phys Lett 88:121910

    Article  CAS  Google Scholar 

  81. Kumar A, Rabe U, Hirsekorn S, Arnold W (2008) Elasticity mapping of precipitates in polycrystalline materials using atomic force acoustic microscopy. Appl Phys Lett 92:183106

    Article  CAS  Google Scholar 

  82. Yamanaka K, Maruyama Y, Tsuji T, Nakamoto K (2001) Resonance frequency and Q factor mapping by ultrasonic atomic force microscopy. Appl Phys Lett 78:1939–1941

    Article  CAS  Google Scholar 

  83. Killgore JP, Yablon DG, Tsou AH, Gannepalli A, Yuya PA, Turner JA et al (2011) Viscoelastic property mapping with contact resonance force microscopy. Langmuir 27:13983–13987

    Article  CAS  Google Scholar 

  84. Passeri D, Bettucci A, Germano M, Rossi M, Alippi A, Fiori A et al (2007) Local indentation modulus characterization via two contact resonance frequencies atomic force acoustic microscopy. Microelectron Eng 84:490–494

    Article  CAS  Google Scholar 

  85. Passeri D, Rossi M, Alippi A, Bettucci A, Terranova ML, Tamburri E et al (2008) Characterization of epoxy/single-walled carbon nanotubes composite samples via atomic force acoustic microscopy. Physica E 40:2419–2424

    Article  CAS  Google Scholar 

  86. Preghenella M, Pegoretti A, Migliaresi C (2006) Atomic force acoustic microscopy analysis of epoxy-silica nanocomposites. Polym Test 25:443–451

    Article  CAS  Google Scholar 

  87. Zhao W, Singh RP, Korach CS (2009) Effects of environmental degradation on near-fiber nanomechanical properties of carbon fiber epoxy composites. Compos Part A Appl Sci Manuf 40:675–678

    Article  CAS  Google Scholar 

  88. Liu Y, Chen S, Zussman E, Korach CS, Zhao W, Rafailovich M (2011) Diameter-dependent modulus and melting behavior in electrospun semicrystalline polymer fibers. Macromolecules 44:4439–4444

    Article  CAS  Google Scholar 

  89. Yuya PA, Hurley DC, Turner JA (2008) Contact-resonance atomic force microscopy for viscoelasticity. J Appl Phys 104:074916

    Article  CAS  Google Scholar 

  90. Yuya PA, Hurley DC, Turner JA (2011) Relationship between Q-factor and sample damping for contact resonance atomic force microscope measurement of viscoelastic properties. J Appl Phys 109:113528

    Article  CAS  Google Scholar 

  91. Killgore JP, Hurley DC (2012) Pulsed contact resonance for atomic force microscopy nanomechanical measurements. Appl Phys Lett 100:053104

    Article  CAS  Google Scholar 

  92. Kolosov O, Yamanaka K (1993) Nonlinear detection of ultrasonic vibrations in an atomic force microscope. Jpn J Appl Phys Part 2 32:L1095–L1098

    Article  CAS  Google Scholar 

  93. Dinelli F, Assender HE, Takeda N, Briggs GAD, Kolosov OV (1999) Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM). Surf Interface Anal 27:562–567

    Article  CAS  Google Scholar 

  94. Dinelli F, Biswas SK, Briggs GAD, Kolosov OV (2000) Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy. Phys Rev B 61:13995–14006

    Article  CAS  Google Scholar 

  95. Bliznyuk VN, Lipatov YS, Ozdemir N, Todosijchuk TT, Chornaya VN, Singamanemi S (2007) Atomic force and ultrasonic force microscopy investigation of adsorbed layers formed by two incompatible polymers: polystyrene and poly(butyl methacrylate). Langmuir 23:12973–12983

    Article  CAS  Google Scholar 

  96. Porfyrakis K, Kolosov OV, Assender HE (2001) AFM and UFM surface characterization of rubber-toughened poly(methyl methacrylate) samples. J Appl Polym Sci 82:2790–2798

    Article  CAS  Google Scholar 

  97. Iwata F, Suzuki Y, Moriki Y, Koike S, Sasaki A (2001) Nanowearing property of a fatigued polycarbonate surface studied by atomic force microscopy. J Vac Sci Technol B 19:666–670

    Article  CAS  Google Scholar 

  98. Porfyrakis K, Assender HE, Robinson IM (2002) The interrelationship between processing conditions, microstructure and mechanical properties for injection moulded rubber-toughened poly(methyl methacrylate) (RTPMMA) samples. Polymer 43:4769–4781

    Article  CAS  Google Scholar 

  99. Iwata F, Matsumoto T, Sasaki A (2000) Local elasticity imaging of nano bundle structure of polycarbonate surface using atomic force microscopy. Nanotechnology 11:10–15

    Article  CAS  Google Scholar 

  100. Fernandez E, Hernandez R, Cuberes MT, Mijangos C, Lopez D (2010) New hydrogels from interpenetrated physical gels of agarose and chemical gels of polyacrylamide: effect of relative concentration and crosslinking degree on the viscoelastic and thermal properties. J Polym Sci Polym Phys 48:2403–2412

    Article  CAS  Google Scholar 

  101. Cantrell SA, Cantrell JH, Lillehei PT (2007) Nanoscale subsurface imaging via resonant difference-frequency atomic force ultrasonic microscopy. J Appl Phys 101:114324

    Article  CAS  Google Scholar 

  102. Cuberes MT, Alexander HE, Briggs GAD, Kolosov OV (2000) Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies. J Phys D Appl Phys 33:2347–2355

    Article  CAS  Google Scholar 

  103. Diebold AC (2005) Subsurface imaging with scanning ultrasound holography. Science 310:61–62

    Article  CAS  Google Scholar 

  104. Shekhawat GS, Dravid VP (2005) Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310:89–92

    Article  CAS  Google Scholar 

  105. Shekhawat G, Srivastava A, Avasthy S, Dravid VP (2009) Ultrasound holography for noninvasive imaging of buried defects and interfaces for advanced interconnect architectures. Appl Phys Lett 95:263101

    Article  CAS  Google Scholar 

  106. Tamayo J, García R (1996) Deformation, contact time, phase contrast in tapping mode scanning force microscopy. Langmuir 12:4430–4435

    Article  CAS  Google Scholar 

  107. Tamayo J, García R (1997) Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl Phys Lett 71:2394–2396

    Article  CAS  Google Scholar 

  108. Cleveland JP, Anczykowski B, Schmid AE, Elings V (1998) Energy dissipation in tapping-mode atomic force microscopy. Appl Phys Lett 72:2613–2615

    Article  CAS  Google Scholar 

  109. Bar G, Brandsch R, Whangbo MH (1998) Effect of viscoelastic properties of polymers on the phase shift in tapping mode atomic force microscopy. Langmuir 14:7343–7347

    Article  CAS  Google Scholar 

  110. Chen X, Davies MC, Roberts CJ, Tendler SJB, Williams PM, Davies J et al (1998) Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements. Ultramicroscopy 75:171–181

    Article  CAS  Google Scholar 

  111. García R, San Paulo A (1999) Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys Rev B 60:4961–4967

    Article  Google Scholar 

  112. Wang L (1999) The role of damping in phase imaging in tapping mode atomic force microscopy. Surf Sci 429:178–185

    Article  CAS  Google Scholar 

  113. Kopp-Marsaudon S, Leclère P, Dubourg F, Lazzaroni R, Aimé JP (2000) Quantitative measurement of the mechanical contribution to tapping-mode atomic force microscopy images of soft materials. Langmuir 16:8432–8437

    Article  CAS  Google Scholar 

  114. San Paulo A, García R (2001) Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy. Phys Rev B 64:193411

    Article  CAS  Google Scholar 

  115. Knoll A, Magerle R, Kraush G (2001) Tapping mode atomic force microscopy on polymers: where is the true sample surface? Macromolecules 34:4159–4165

    Article  CAS  Google Scholar 

  116. San Paulo A, García R (2002) Unifying theory of tapping-mode atomic-force microscopy. Phys Rev B 66:041406

    Article  CAS  Google Scholar 

  117. Perez R, García R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301

    Article  Google Scholar 

  118. Magonov SN, Reneker DH (1997) Characterization of polymer surfaces with atomic force microscopy. Annu Rev Mater Sci 27:175–222

    Article  CAS  Google Scholar 

  119. Sundrani D, Darling SB, Sibener SJ (2004) Hierarchical assembly and compliance of aligned nanoscale polymer cylinders in confinement. Langmuir 20:5091–5099

    Article  CAS  Google Scholar 

  120. Raghavan D, Gu X, Nguyen T, VanLandingham M, Karim A (2000) Mapping polymer heterogeneity using atomic force microscopy phase imaging and nanoscale indentation. Macromolecules 33:2573–2583

    Article  CAS  Google Scholar 

  121. Wang Y, Song R, Li Y, Shen J (2003) Understanding tapping-mode atomic force microscopy data on the surface of soft block copolymers. Surf Sci 530:136–148

    Article  CAS  Google Scholar 

  122. Stafford CM, Vogt BD, Harrison C, Julthongpiput D, Huang R (2006) Elastic moduli of ultrathin amorphous polymer films. Macromolecules 39:5095–5099

    Article  CAS  Google Scholar 

  123. Bar G, Ganter M, Brandsch R, Delineau L, Whangbo MH (2000) Examination of butadiene/styrene-co-butadiene rubber blends by tapping mode atomic force microscopy. Importance of the indentation depth and reduced tip-sample energy dissipation in tapping mode atomic force microscopy study of elastomers. Langmuir 16:5702–5711

    Article  CAS  Google Scholar 

  124. Magonov SN, Cleveland J, Elings V, Denley D, Whangbo MH (1997) Tapping-mode atomic force microscopy study of the near-surface composition of a styrene-butadiene-styrene triblock copolymer film. Surf Sci 389:201–211

    Article  CAS  Google Scholar 

  125. Raghavan D, VanLandingham M, Gu X, Nguyen T (2000) Characterization of heterogeneous regions in polymer systems using tapping mode and force mode atomic force microscopy. Langmuir 16:9448–9459

    Article  CAS  Google Scholar 

  126. Fukuma T, Kilpatrick JI, Jarvis SP (2006) Phase modulation atomic force microscope with true atomic resolution. Rev Sci Instrum 77:123703

    Article  CAS  Google Scholar 

  127. Li YJ, Kobayashi N, Naitoh Y, Kageshima M, Sugawara Y (2008) Phase modulation atomic force microscopy in constant excitation mode capable of simultaneous imaging of topography and energy dissipation. Appl Phys Lett 92:121903

    Article  CAS  Google Scholar 

  128. Sahin O, Magonov S, Su C, Quate CF, Solgaard O (2007) An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat Nanotechnol 2:507–514

    Article  Google Scholar 

  129. Sahin O, Erina N (2008) High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 19:445717

    Article  CAS  Google Scholar 

  130. Ishiyama C, Higo Y (2002) Effects of humidity on Young’s modulus in poly(methyl methacrylate). J Polym Sci B Polym Phys 40:460–465

    Article  CAS  Google Scholar 

  131. Süske E, Scharf T, Schaaf P, Panchenko E, Nelke D, Buback M et al (2004) Variation of the mechanical properties of pulsed laser deposited PMMA films during annealing. Appl Phys A 79:1295–1297

    Article  CAS  Google Scholar 

  132. Wang C (2001) Tear strength of styrene-butadiene-styrene block copolymers. Macromolecules 34:9006–9014

    Article  CAS  Google Scholar 

  133. Young TJ, Monclus MA, Burnett TL, Broughton WR, Ogin SL, Smith PA (2011) The use of the PeakForce™ quantitative nanomechanical mapping AFM-based method for high resolution Young’s modulus measurement of polymers. Meas Sci Technol 22:125703

    Article  CAS  Google Scholar 

  134. Schön P, Bagdi K, Molnár K, Markus P, Pukánszky B, Julius Vancso G (2011) Quantitative mapping of elastic moduli at the nanoscale in phase separated polyurethanes by AFM. Eur Polym J 47:692–698

    Article  CAS  Google Scholar 

  135. Schön P, Dutta S, Shirazi M, Noordermeer J, Julius Vancso G (2011) Quantitative mapping of surface elastic moduli in silica-reinforced rubbers and rubber blends across the length scales by AFM. J Mater Sci 46:3507–3516

    Article  CAS  Google Scholar 

  136. Rosa-Zeiser A, Weilandt E, Hild S, Marti O (1997) The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas Sci Technol 8:1333–1338

    Article  CAS  Google Scholar 

  137. Marti O, Stifter T, Waschiphy H, Quintus M, Hild S (1999) Scanning probe microscopy of heterogeneous polymers. Colloids Surface A 154:65–73

    Article  CAS  Google Scholar 

  138. Rezende CA, Lee LT, Galembeck F (2009) Surface mechanical properties of thin polymer films investigated by AFM in pulsed force mode. Langmuir 25:9938–9946

    Article  CAS  Google Scholar 

  139. Meincken M, Roux SP, Jacobs EP (2005) Determination of the hydrophilic character of membranes by pulsed force mode atomic force microscopy. Appl Surf Sci 252:1772–1779

    Article  CAS  Google Scholar 

  140. Morton DN, Roberts CJ, Hey MJ, Mitchell JR, Hipkiss J, Vercauteren J (2003) Surface characterization of caramel at the micrometer scale. J Food Sci 68:1411–1415

    Article  CAS  Google Scholar 

  141. Adamcik J, Berquand A, Mezzenga R (2011) Single-step direct measurement of amyloid fibrils stiffness by peak force quantitative nanomechanical atomic force microscopy. Appl Phys Lett 98:193701

    Article  CAS  Google Scholar 

  142. Pletikapic G, Berquand A, Misic Radic T, Svetlicic V (2012) Quantitative nanomechanical mapping of marine diatom in seawater using peak force tapping atomic force microscopy. J Phycol 48:174–185

    Article  Google Scholar 

  143. Pakzad A, Simonsen J, Yassar RS (2012) Gradient of nanomechanical properties in the interphase of cellulose nanocrystal composites. Compos Sci Technol 72:314–319

    Article  CAS  Google Scholar 

  144. Sweers K, van der Werf K, Bennink M, Subramaniam V (2011) Nanomechanical properties of α-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and Peakforce QNM. Nanoscale Res Lett 6:270

    Article  CAS  Google Scholar 

  145. Chen X, Davies MC, Roberts CJ, Tendler SJB, Williams PM (2000) Hydrodynamic damping of tip oscillation in pulsed-force atomic force microscopy. Appl Phys Lett 77:3462–3464

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Passeri.

Additional information

Published in the topical collection Characterization of Thin Films and Membranes with guest editors Daniel Mandler and Pankaj Vadgama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passeri, D., Rossi, M., Tamburri, E. et al. Mechanical characterization of polymeric thin films by atomic force microscopy based techniques. Anal Bioanal Chem 405, 1463–1478 (2013). https://doi.org/10.1007/s00216-012-6419-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6419-3

Keywords

Navigation