Skip to main content
Log in

Analytical methods for selected emerging contaminants in human matrices—a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Emerging contaminants are a broad category of chemicals, previously unknown or unrecognized as being of concern, but which, because of their potential health effects associated with human exposure, are under increasing scrutiny. To accurately measure their levels in biological matrices, specific and sensitive analytical methods have recently been developed. We have reviewed here the methods used for analysis of selected emerging organic contaminants, for example metabolites of organophosphate triesters, metabolites of new phthalates or phthalate substitutes, perchlorate, organic UV filters, and polycyclic siloxanes, in human matrices. Although the use of new techniques and approaches has been emphasized, we also acknowledge methods previously used for other contaminants and adapted for the emerging contaminants listed above. In all cases, chromatography and mass spectrometry were the techniques of choice, because of their selectivity and sensitivity for measurements at ng g−1 levels. Critical issues and challenges have been discussed, together with recommendations for further improvement in particular cases (e.g. metabolites of phthalates or their substitutes). In particular, the use of labeled internal standards, the availability of certified reference materials, and the need for interlaboratory comparison exercises are key aspects of further development of this field of research.

Humans are daily exposed to a cocktail of chemicals, including new compounds

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schwesig D, Borchers U, Chancerelle L, Dulio V, Eriksson U, Farré M, Goksoyr A, Lamoree M, Leonards P, Lepom P, Leverett D, O’Neill A, Robinson R, Silharova K, Slobodnik J, Tolgyessy P, Tutundjian R, Wegener J-W, Westwood D (2011) A harmonized European framework for method validation to support research on emerging pollutants. Trends Anal Chem 30:1233–1242

    CAS  Google Scholar 

  2. World Health Organisation, Environmental Health Criteria 110: Tricresyl Phosphate, International Programme on Chemical Safety, Geneva, 1990

  3. World Health Organisation, Environmental Health Criteria 111: Triphenyl Phosphate, International Programme on Chemical Safety, Geneva, 1991

  4. World Health Organisation, Environmental Health Criteria 112: Tributyl Phosphate, International Programme on Chemical Safety, Geneva, 1991

  5. World Health Organisation, Environmental Health Criteria 209: Flame retardants Tris(2-chloroethyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate, International Programme on Chemical Safety, Geneva, 1998

  6. World Health Organisation, Environmental Health Criteria 218: Flame retardants Tris(2-butoxyethyl) phosphate, tris(2-ethylhexyl) phosphate, and tetrakis(hydroxymethyl)phosphonium salts, International Programme on Chemical Safety, Geneva, 2000

  7. United Nations Environment Programme, OECD Screening Information Data Set: Triphenylphosphate 115-86-6, Boston, MA, 2002

  8. Jonsson OB, Nilsson UL (2003) Determination of organophosphate ester plasticisers in blood donor plasma using a new stir-bar assisted microporous membrane liquid–liquid extractor. J Sep Sci 26:886–892

    CAS  Google Scholar 

  9. Jonsson OB, Nilsson UL (2003) Miniaturized dynamic liquid–liquid extraction of organophosphate triesters from blood plasma using the hollow fibre-based XT-tube extractor. Anal Bioanal Chem 377:182–188

    CAS  Google Scholar 

  10. Jonsson OB, Nordlof U, Nilsson UL (2003) The XT-tube extractor: a hollow fiber-based supported liquid membrane extractor for bioanalytical sample preparation. Anal Chem 75:3506–3511

    CAS  Google Scholar 

  11. Moller K, Crescenzi C, Nilsson U (2004) Determination of a flame retardant hydrolysis product in human urine by SPE and LC–MS. Comparison of molecularly imprinted solid-phase extraction with a mixed-mode anion exchanger. Anal Bioanal Chem 378:197–204

    Google Scholar 

  12. Schindler BK, Forster K, Angerer J (2009) Determination of human urinary organophosphate flame retardant metabolites by solid-phase extraction and gas chromatography–tandem mass spectrometry. J Chromatogr B 877:375–381

    CAS  Google Scholar 

  13. Schindler BK, Forster K, Angerer J (2009) Quantification of two urinary metabolites of organophosphorus flame retardants by solid-phase extraction and gas chromatography–tandem mass spectrometry. Anal Bioanal Chem 395:1167–1171

    CAS  Google Scholar 

  14. Cooper EM, Covaci A, van Nuijs AL, Webster TF, Stapleton HM (2011) Analysis of the flame retardant metabolites bis(1,3-dichloro-2-propyl) phosphate (BDCPP) and diphenyl phosphate (DPP) in urine using liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 401:2123–2132

    CAS  Google Scholar 

  15. Reemtsma T, Lingott J, Roegler S (2011) Determination of 14 monoalkyl phosphates, dialkyl phosphates and dialkyl thiophosphates by LC–MS/MS in human urinary samples. Sci Total Environ 409:1990–1993

    CAS  Google Scholar 

  16. Van den Eede, N, Dirtu, AC, Neels, H, Covaci, A (2011) Optimization and Validation of an Analytical Method for the Monitoring of Metabolites of Organophosphate Flame Retardants and Plasticizers in Urine. SETAC North America 32nd annual meeting, ISSN 1087–8939

  17. Yoshida T, Yoshida J (2012) Simultaneous analytical method for urinary metabolites of organophosphorus compounds and moth repellents in general population. J Chromatogr B 880:66–73

    CAS  Google Scholar 

  18. Amini N, Crescenzi C (2003) Feasibility of an on-line restricted access material-liquid chromatography–tandem mass spectrometry method in the rapid and sensitive determination of organophosphorus triesters in human blood plasma. J Chromatogr B 795:245–256

    CAS  Google Scholar 

  19. Shah M, Meija J, Cabovska B, Caruso JA (2006) Determination of phosphoric acid triesters in human plasma using solid-phase microextraction and gas chromatography coupled to inductively coupled plasma mass spectrometry. J Chromatogr A 1103:329–336

    CAS  Google Scholar 

  20. Sundkvist AM, Olofsson U, Haglund P (2010) Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J Environ Monit 12:943–951

    CAS  Google Scholar 

  21. Hardt J, Angerer J (2000) Determination of Dialkyl Phosphates in Human Urine using Gas Chromatography–Mass Spectrometry. J Anal Toxicol 24:678–684

    CAS  Google Scholar 

  22. Chu S, Chen D, Letcher RJ (2011) Dicationic ion-pairing of phosphoric acid diesters post-liquid chromatography and subsequent determination by electrospray positive ionization–tandem mass spectrometry. J Chromatogr A 1218:8083–8088

    CAS  Google Scholar 

  23. Quintana JB, Rodil R, Reemtsma T (2006) Determination of phosphoric acid mono- and diesters in municipal wastewater by solid-phase extraction and ion-pair liquid chromatography–tandem mass spectrometry. Anal Chem 78:1644–1650

    CAS  Google Scholar 

  24. David F, Sandra P, Hancock P (2011) Determining high-molecular-weight phthalates in sediments using GC–APCI–ToF-MS. LC–GC. Europe 24:16–20

    CAS  Google Scholar 

  25. Koch HM, Calafat AM (2009) Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond B Biol Sci 364:2063–2078

    CAS  Google Scholar 

  26. Nagorka R, Conrad A, Scheller C, Sussenbach B, Moriske HJ (2010) Plasticizers and flame retardants in household dust - Part 1: Phthalates. Gefahrst Reinhalt L 70:70–76

    CAS  Google Scholar 

  27. Nagorka R, Conrad A, Scheller C, Süßenbach B, Moriske H-J (2011) Diiso-nonyl 1,2-cyclohexanedicarboxylic acid (DINCH) and di(2-ethylhexyl) terephthalate (DEHT) in indoor dust samples: concentration and analytical problems. Int J Hyg Environ Health 214:26–35

    CAS  Google Scholar 

  28. Wittassek M, Angerer J (2008) Phthalates: metabolism and exposure. Int J Androl 31:131–138

    CAS  Google Scholar 

  29. Wittassek M, Koch HM, Angerer J, Brüning T (2011) Assessing exposure to phthalates – The human biomonitoring approach. Mol Nutr Food Res 55:7–31

    CAS  Google Scholar 

  30. Lorber M, Koch HM, Angerer J (2011) A critical evaluation of the creatinine correction approach: Can it underestimate intakes of phthalates? A case study with di-2-ethylhexyl phthalate. J Expo Sci Env Epid 21:576–586

    CAS  Google Scholar 

  31. Angerer J, Bird MG, Burke TA, Doerrer NG, Needham L, Robison SH, Sheldon L, Zenick H (2006) Strategic biomonitoring initiatives: moving the science forward. Toxicol Sci 93:3–10

    CAS  Google Scholar 

  32. Calafat AM, Wong L-Y, Silva MJ, Samandar E, Preau JL Jr, Jia LT, Needham LL (2011) Selecting adequate exposure biomarkers of diiso-nonyl and diisodecyl phthalates: data from the 2005–2006 National Health and Nutrition examination survey. Environ Health Perspect 119:50–55

    CAS  Google Scholar 

  33. Fromme H, Gruber L, Seckin E, Raab U, Zimmermann S, Kiranoglu M, Schlummer M, Schwegler U, Smolic S, Volkel W (2011) Phthalates and their metabolites in breast milk-Results from the Bavarian Monitoring of Breast Milk (BAMBI). Environ Int 37:715–722

    CAS  Google Scholar 

  34. Koch HM, Wittassek M, Bruning T, Angerer J, Heudorf U (2011) Exposure to phthalates in 5–6 years old primary school starters in Germany-A human biomonitoring study and a cumulative risk assessment. Int J Hyg Environ Heal 214:188–195

    CAS  Google Scholar 

  35. Wirnitzer U, Rickenbacher U, Katerkamp A, Schachtrupp A (2011) Systemic toxicity of di-2-ethylhexyl terephthalate (DEHT) in rodents following four weeks of intravenous exposure. Toxicol Lett 205:8–14

    CAS  Google Scholar 

  36. Silva MJ, Slakman AR, Reidy JA, Preau JL Jr, Herbert AR, Samandar E, Needham LL, Calafat AM (2004) Analysis of human urine for fifteen phthalate metabolites using automated solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 805:161–167

    CAS  Google Scholar 

  37. Centers for Disease Control and Prevention (2009), Fourth National Report on Human Exposure to Environmental Chemicals, Atlanta, GA, National Center for Environmental Health, Division of Laboratory Sciences, available online: http://www.cdc.gov/exposurereport/pdf/FourthReport.pdf (accessed March 2012)

  38. Koch HM, Müller J, Angerer J (2007) Determination of secondary, oxidised di-iso-nonylphthalate (DINP) metabolites in human urine representative for the exposure to commercial DINP plasticizers. J Chromatogr B 847:114–125

    CAS  Google Scholar 

  39. Silva MJ, Reidy JA, Preau JL Jr, Needham LL, Calafat AM (2006) Oxidative metabolites of di-iso-nonyl phthalate as biomarkers for human exposure assessment. Environ Health Perspect 114:1158–1161

    CAS  Google Scholar 

  40. Silva MJ, Kato K, Wolf C, Samandar E, Silva SS, Gray EL, Needham LL, Calafat AM (2006) Urinary biomarkers of di-iso-nonyl phthalate in rats. Toxicology 223:101–112

    CAS  Google Scholar 

  41. Hines EP, Calafat AM, Silva MJ, Mendola P, Fenton SE (2009) Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women. Environ Health Perspect 117:86–92

    CAS  Google Scholar 

  42. Frederiksen H, Jørgensen N, Andersson AM (2010) Correlations between phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilution liquid chromatography tandem mass spectrometry. J Anal Toxicol 34:400–410

    CAS  Google Scholar 

  43. Lin S, Ku H-Y, Su P-H, Chen J-W, Huang P-C, Angerer J, Wang S-L (2011) Phthalate exposure in pregnant women and their children in central Taiwan. Chemosphere 82:947–955

    CAS  Google Scholar 

  44. Blount BC, Milgram KE, Silva MJ, Malek NA, Reidy JA, Needham LL, Brock JW (2000) Quantitative detection of eight phthalate metabolites in human urine using HPLC APCI–MS/MS. Anal Chem 72:4127–4134

    CAS  Google Scholar 

  45. Kato K, Silva MJ, Needham LL, Calafat AM (2005) Determination of 16 phthalate metabolites in urine using automated sample preparation and on-line preconcentration/High-Performance Liquid Chromatography/tandem Mass Spectrometry. Anal Chem 77:2985–2991

    CAS  Google Scholar 

  46. Silva MJ, Samandar E, Preau JL Jr, Reidy JA, Needham LL, Calafat AM (2007) Quantification of 22 phthalate metabolites in human urine. J Chromatogr B 860:106–112

    CAS  Google Scholar 

  47. Silva MJ, Preau JL Jr, Needham LL, Calafat AM (2008) Cross validation and ruggedness testing of analytical methods used for the quantification of urinary phthalate metabolites. J Chromatogr B 873:180–186

    CAS  Google Scholar 

  48. Kondo F, Ikai Y, Hayashi R, Okumura M, Takatori S, Nakazawa H, Izumi S, Makino (2010) Determination of five phthalate monoesters in human urine using gas chromatography–mass spectrometry. Bull Environ Contam Toxicol 85:92–96

    CAS  Google Scholar 

  49. Koch HM, Gonzalez-Reche LM, Angerer J (2003) On-line clean-up by multidimensional liquid chromatography–electrospray ionization tandem mass spectrometry for high throughput quantification of primary and secondary phthalate metabolites in human urine. J Chromatogr B 784:169–182

    CAS  Google Scholar 

  50. Preuss R, Koch HM, Angerer J (2005) Biological monitoring of the five major metabolites of di-(2-ethylhexyl)phthalate (DEHP) in human urine using column-switching liquid chromatography–tandem mass spectrometry. J Chromatogr B 816:269–280

    CAS  Google Scholar 

  51. Silva MJ, Reidy JA, Preau JL, Samandar E, Needham LL, Calafat AM (2006) Measurement of eight urinary metabolites of di(2-ethylhexyl) phthalate as biomarkers for human exposure assessment. Biomarkers 11:1–13

    CAS  Google Scholar 

  52. Silva MJ, Samandar E, Preau JL, Needham LL, Calafat AM (2006) Urinary oxidative metabolites of di(2-ethylhexyl) phthalate in humans. Toxicology 219:22–32

    CAS  Google Scholar 

  53. Calafat AM, Slakman AR, Silva MJ, Herbert AR, Needham LL (2004) Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. J Chromatogr B 805:49–56

    CAS  Google Scholar 

  54. Reid AM, Brougham CA, Fogarty AM, Roche JJ (2007) An investigation into possible sources of phthalate contamination in the environmental analytical laboratory. Intern J Environ Anal Chem 87:125–133

    CAS  Google Scholar 

  55. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC–MS/MS. Anal Chem 75:3019–3030

    CAS  Google Scholar 

  56. Mendiratta SK, Dotson RL, Brooker RT (1996) Perchloric acid and perchlorates. In: Kirk Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc: New York, NY, pp. 157–170

  57. Urbansky ET (1998) Perchlorate chemistry: implications for analysis and remediation. Bioremed J 2:81–95

    CAS  Google Scholar 

  58. Burns DT, Chimpalee N, Harriott M (1989) Flow-injection extraction spectrophotometric determination of perchlorate with brilliant green. Anal Chim Acta 217:177–181

    Google Scholar 

  59. Dasgupta PK, Martinelango PK, Jackson WA, Anderson TA, Tian K, Tock RW, Rajagopalan S (2005) The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ Sci Technol 39:1569–1575

    CAS  Google Scholar 

  60. Yu L, Canas JE, Cobb GP, Jackson WA, Anderson TA (2004) Uptake of perchlorate in terrestrial plants. Ecotoxicol Env Safety 58:44–49

    CAS  Google Scholar 

  61. Urbansky ET, Brown SK, Magnuson ML, Kelty SK (2001) Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ Pollut 112:299–302

    CAS  Google Scholar 

  62. Murray CW, Egan SK, Kim H, Beru N, Bolger PM (2008) US Food and Drug Administration’s total diet study: dietary intake of perchlorate and iodine. J Exp Sci Environ Epidemiol 18:571–580

    CAS  Google Scholar 

  63. Kirk AB, Martinelango PK, Tian K, Dutta A, Smith EE, Dasgupta PK (2005) Perchlorate and iodide in dairy and breast milk. Environ Sci Technol 39:2011–2017

    CAS  Google Scholar 

  64. Capuco AV, Rice CP, Baldwin RL (2005) Fate of dietary perchlorate in lactating dairy cows. Proc Natl Acad Sci USA 102(45):16152–16157

    CAS  Google Scholar 

  65. Gibbs JP, Ahmad R, Crump KS, Houck DP, Leveille TS, Findley JE, Francis M (1998) Evaluation of a population with occupational exposure to airborne ammonium perchlorate for possible acute or chronic effects on thyroid function. J Occup Environ Med 40:1072–1082

    CAS  Google Scholar 

  66. Valentin-Blasini L, Mauldin JP, Maple D, Blount BC (2005) Analysis of perchlorate in human urine using ion chromatography and electrospray tandem mass spectrometry. Anal Chem 77:2475–2481

    CAS  Google Scholar 

  67. Blount BC, Pirkle JL, Osterloh JD, Valentin-Blasini L, Caldwell KL (2006) Urinary perchlorate and thyroid hormone levels in adolescent and adult men and women living in the United States. Environ Health Perspect 114:1865–1871

    CAS  Google Scholar 

  68. Blount BC, Valentin-Blasini L, Osterloh JD, Mauldin JP, Pirkle JL (2007) Perchlorate exposure of the US Population, 2001–2002. J Exp Sci Environ Epidemiol 17:400–407

    CAS  Google Scholar 

  69. Kirk AB, Dyke JV, Martin CF, Dasgupta PK (2007) Temporal patterns in perchlorate, thiocyanate, and iodide excretion in human milk. Environ Health Perspect 115:182–186

    CAS  Google Scholar 

  70. Pearce EN, Leung AM, Blount BC, Bazrafshan HR, He X, Pino S, Valentin-Blasini L, Braverman LE (2007) Breast milk iodine and perchlorate concentrations in lactating Boston-area women. J Clin Endocrinol Metab 92:1673–1677

    CAS  Google Scholar 

  71. Amitai Y, Winston G, Sack J, Wasser J, Lewis M, Blount BC, Valentin-Blasini L, Fisher N, Israeli A, Leventhal A (2007) Gestational exposure to high perchlorate concentrations in drinking water and neonatal thyroxine levels. Thyroid 17:843–850

    CAS  Google Scholar 

  72. Dasgupta PK, Kirk AB, Dyke JV, Ohira S (2008) Intake of iodine and perchlorate and excretion in human milk. Environ Sci Technol 42:8115–8121

    CAS  Google Scholar 

  73. Ohira S, Kirk AB, Dyke JV, Dasgupta PK (2008) Creatinine adjustment of spot urine samples and 24 h excretion of iodine, selenium, perchlorate, and thiocyanate. Environ Sci Technol 42:9419–9423

    CAS  Google Scholar 

  74. Blount BC, Rich DD, Valentin-Blasini L, Lashley S, Ananth CV, Murphy E, Smulian JC, Spain BJ, Barr DB, Ledoux T (2009) Perinatal exposure to perchlorate, thiocyanate, and nitrate in New Jersey mothers and newborns. Environ Sci Technol 43:7543–7549

    CAS  Google Scholar 

  75. Oldi JF, Kannan K (2009) Analysis of perchlorate in human saliva by liquid chromatography–tandem mass spectrometry. Environ Sci Technol 43:142–147

    CAS  Google Scholar 

  76. Oldi JF, Kannan K (2009) Perchlorate in human blood serum and plasma: relationship to concentrations in saliva. Chemosphere 77:43–47

    CAS  Google Scholar 

  77. Kannan K, Praamsma M, Oldi JF, Kunisue T, Sinha RK (2009) Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India. Chemosphere 76:22–26

    CAS  Google Scholar 

  78. Zhang T, Wu Q, Sun WH, Rao J, Kannan K (2010) Perchlorate and iodide in whole blood samples from infants, children, and adults in Nanchang, China. Environ Sci Technol 44:6947–6953

    CAS  Google Scholar 

  79. Borjian M, Marcella S, Blount B, Greenberg M, Zhang J, Murphy E, Blasini VL, Robson M (2011) Perchlorate exposure in lactating women in an urban community in New Jersey. Sci Total Environ 409:460–464

    Google Scholar 

  80. Wolff J (1998) Perchlorate and the thyroid gland. Pharmacol Rev 50:89–105

    CAS  Google Scholar 

  81. United States Environmental Protection Agency (USEPA) (2005) http://yosemite.epa.gov/ opa/admpress.nsf/b1ab9f485b098972852562e7004dc686/c1a57d2077c4bfda8525y6fac005b8b32!opendocument. Accessed February 2012

  82. Valentin-Blasini L, Blount BC, Delinsky A (2007) Quantification of iodide and sodium-iodide symporter inhibitors in human urine using ion chromatography tandem mass spectrometry. J Chromatogr A 1155:40–46

    CAS  Google Scholar 

  83. Kirk AB, Smith EE, Tian K, Anderson TA, Dasgupta PK (2003) Perchlorate in milk. Environ Sci Technol 37:4979–4981

    CAS  Google Scholar 

  84. Dyke JV, Kirk AB, Martinelango PK, Dasgupta PK (2006) Sample processing method for the determination of perchlorate in milk. Anal Chim Acta 567:73–78

    CAS  Google Scholar 

  85. Blount BC, Valentin-Blasini L (2006) Analysis of perchlorate, thiocynate, nitrate and iodide in human amniotic fluid using ion chromatography and electrospray tendem mass spectrometry. Anal Chim Acta 567:87–93

    CAS  Google Scholar 

  86. Greer MA, Goodman G, Pleus RC, Greer SE (2002) Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environ Health Perspect 110:927–937

    CAS  Google Scholar 

  87. Gu B, Coates JD (2006) Perchlorate: environmental occurrence, interactions and treatment. Springer Science, Business Media, Inc., New York

    Google Scholar 

  88. Chen ZF, Darvell BW, Leung VW (2004) Validation of ion chromatography for human salivary anionic analysis. Arch Oral Biol 49:855–862

    CAS  Google Scholar 

  89. Bao H, Gu B (2004) Natural perchlorate has a unique oxygen isotope signature. Environ Sci Technol 38:5073–5077

    CAS  Google Scholar 

  90. Giokas DL, Salvador A, Chisvert A (2007) UV filters: From sunscreens to human body and the environment. Trends Anal Chem 26:360–374

    CAS  Google Scholar 

  91. Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W (2001) In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect 109:239–244

    CAS  Google Scholar 

  92. Richardson SD (2010) Environmental mass spectrometry: emerging contaminants and current issues. Anal Chem 82:4742–4774

    CAS  Google Scholar 

  93. Janjua NR, Mogensen B, Andersson AM, Petersen JH, Henriksen M, Skakkebaek NE, Wulf HC (2004) Systemic absorption of the sunscreens benzophenone-3, octyl-methoxycinnamate, and 3-(4-methyl-benzylidene) camphor after whole-body topical application and reproductive hormone levels in humans. J Invest Dermatol 123:57–61

    CAS  Google Scholar 

  94. European Commission, Council Directive 76/768/CEE of 27 July 1976 on the approximation of the laws of the Member States relating to cosmetic products, and its successive amendments and adaptations (http://europa.eu.int/comm/enterprise/cosmetics/html/consolidated_dir.htm)

  95. Gago-Ferrero P, Diaz-Cruz MS, Barcelo D (2011) Fast pressurized liquid extraction with in-cell purification and analysis by liquid chromatography tandem mass spectrometry for the determination of UV filters and their degradation products in sediments. Anal Bioanal Chem 400:2195–2204

    CAS  Google Scholar 

  96. Ye XY, Tao LJ, Needham LL, Calafat AM (2008) Automated on-line column-switching HPLC–MS/MS method for measuring environmental phenols and parabens in serum. Talanta 76:865–871

    CAS  Google Scholar 

  97. Ye XY, Kuklenyik Z, Needham LL, Calafat AM (2005) Automated on-line column-switching HPLC–MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal Chem 77:5407–5413

    CAS  Google Scholar 

  98. León Z, Chisvert A, Tarazona I, Salvador A (2010) Solid-phase extraction liquid chromatography–tandem mass spectrometry analytical method for the determination of 2-hydroxy-4-methoxybenzophenone and its metabolites in both human urine and semen. Anal Bioanal Chem 398:831–843

    Google Scholar 

  99. León Z, Chisvert A, Balaguer Á, Salvador A (2010) Development of a fully automated sequential injection solid-phase extraction procedure coupled to liquid chromatography to determine free 2-hydroxy-4-methoxybenzophenone and 2-hydroxy-4-methoxybenzophenone-5-sulphonic acid in human urine. Anal Chim Acta 664:178–184

    Google Scholar 

  100. Vidal L, Chisvert A, Canals A, Salvador A (2007) Sensitive determination of free benzophenone-3 in human urine samples based on an ionic liquid as extractant phase in single-drop microextraction prior to liquid chromatography analysis. J Chromatogr A 1174:95–103

    CAS  Google Scholar 

  101. Ye XY, Bishop AM, Needham LL, Calafat AM (2008) Automated on-line column-switching HPLC–MS/MS method with peak focusing for measuring parabens, triclosan, and other environmental phenols in human milk. Anal Chim Acta 622:150–156

    CAS  Google Scholar 

  102. Schlumpf M, Kypke K, Wittassek M, Angerer J, Mascher H, Mascher D, Vokt C, Birchler M, Lichtensteiger W (2010) Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlorine pesticides, PBDEs, and PCBs in human milk. Correlation of UV filters with use of cosmetics. Chemosphere 81:1171–1183

    CAS  Google Scholar 

  103. Vela-Soria F, Jimenez-Diaz I, Rodriguez-Gomez R, Zafra-Gómez A, Ballesteros O, Navalón A, Vílchez JL, Fernández MF, Olea N (2011) Determination of benzophenones in human placental tissue samples by liquid chromatography–tandem mass spectrometry. Talanta 85:1848–1855

    CAS  Google Scholar 

  104. Hany JR, Nagel R (1995) Detection of sunscreen agents in human breast milk. Dtsch Lebensm Rundsch 91:341–345

    CAS  Google Scholar 

  105. Tan BLL, Mohd MA (2003) Analysis of selected pesticides and alkylphenols in human cord blood by gas chromatograph–mass spectrometer. Talanta 61:385–391

    CAS  Google Scholar 

  106. Kunisue T, Wu Q, Tanabe S, Aldous K, Kannan K (2010) Analysis of five benzophenone-type UV filters in human urine by liquid chromatography–tandem mass spectrometry. Anal Meth 2:707–713

    CAS  Google Scholar 

  107. Sarveiya V, Risk S, Benson HAE (2004) Liquid chromatographic assay for common sunscreen agents: application to in vivo assessment of skin penetration and systemic absorption in human volunteers. J Chromatogr B 803:225–231

    CAS  Google Scholar 

  108. Jeon HK, Sarma SN, Kim YJ, Ryu JC (2008) Toxicokinetics and metabolisms of benzophenone-type UV filters in rats. Toxicology 248:89–95

    CAS  Google Scholar 

  109. Molina-Molina JM, Escande A, Pillon A, Gomez E, Pakdel F, Cavailles V, Olea N, Ait-Aissa S, Balaguer P (2008) Profiling of benzophenone derivatives using fish and human estrogen receptor-specific in vitro bioassays. Toxicol Appl Pharmacol 232:384–395

    CAS  Google Scholar 

  110. Horii Y, Kannan K (2008) Survey of organosilicone compounds, including cyclic and linear siloxanes, in personal-care and household products. Arch Environ Contam Toxicol 55:701–710

    CAS  Google Scholar 

  111. Wang R, Moody RP, Koniecki D, Zhu JP (2009) Low molecular weight cyclic volatile methylsiloxanes in cosmetic products sold in Canada: implication for dermal exposure. Environ Int 35:900–904

    CAS  Google Scholar 

  112. Kierkegaard A, McLachlan MS (2010) Determination of decamethylcyclopentasiloxane in air using commercial solid phase extraction cartridges. J Chromatogr A 1217:3557–3560

    CAS  Google Scholar 

  113. Norden 2005: Nordic Council of Ministers. Siloxanes in the Nordic environment. TemaNord 2005:593. Available at: http://www.norden.org/da/publikationer/publikationer/2005-593/ Accessed 12 Jan 2012

  114. Kierkegaard A, van Egmond R, McLachlan MS (2011) Cyclic volatile methylsiloxane bioaccumulation in flounder and ragworm in the Humber Estuary. Environ Sci Technol 45:5936–5942

    CAS  Google Scholar 

  115. Genualdi S, Harner T, Cheng Y, MacLoed M, Hansen KM, van Egmond R, Shoeib M, Lee SC (2011) Global distribution of linear and cyclic volatile methyl siloxanes in air. Environ Sci Technol 45:3349–3354

    CAS  Google Scholar 

  116. Kaj L, Andersson J, Palm-Cousins A, Remberger M, Ekheden Y, Dusan B, Brorstrom-Lunden E, Cato I (2005) Result from the Swedish National Screening Programme 2004. Subreport 4: Siloxanes

  117. Lu Y, Yuan T, Yun SH, Wang W, Wu Q, Kannan K (2010) Occurrence of cyclic and linear siloxanes in indoor dust from China, and implications for human exposures. Environ Sci Technol 44:6081–6087

    CAS  Google Scholar 

  118. Kierkegaard A, Adolfsson-Erici M, McLachlan MS (2010) Determination of Cyclic Volatile Methylsiloxanes in Biota with a Purge and Trap Method. Anal Chem 82:9573–9578

    CAS  Google Scholar 

  119. Warner NA, Evenset A, Christensen G, Gabrielsen GW, Borga K, Leknes H (2010) Volatile Siloxanes in the European Arctic: Assessment of Sources and Spatial Distribution. Environ Sci Technol 44:7705–7710

    CAS  Google Scholar 

  120. Covaci A, Geens T, Roosens L, Ali N, Van den Eede N, Ionas AC, Malarvannan G, Dirtu AC (2012) Human exposure and health risks to emerging organic contaminants. Emerging Organic Contaminants and Human Health, Springer Verlag, Berlin Heidelberg, DOI: 10.1007/698_2011_126, in press

Download references

Acknowledgments

ACD and AC were financially supported by postdoctoral fellowships from the Research Scientific Foundation—Flanders. NVDE was financially supported by a PhD fellowship from the Research Scientific Foundation—Flanders. GM thanks UA for a post-doctoral fellowship within a GOA project. ACI acknowledges funding of his PhD scholarship through the Marie Curie ITN INFLAME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Covaci.

Additional information

Published in the topical collection Emerging Contaminants in Biota with guest editors Yolanda Picó and Damià Barceló.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 619 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirtu, A.C., Van den Eede, N., Malarvannan, G. et al. Analytical methods for selected emerging contaminants in human matrices—a review. Anal Bioanal Chem 404, 2555–2581 (2012). https://doi.org/10.1007/s00216-012-6053-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6053-0

Keywords

Navigation