Skip to main content

Advertisement

Log in

Comparison of data analysis parameters and MS/MS fragmentation techniques for quantitative proteome analysis using isobaric peptide termini labeling (IPTL)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Isobaric peptide termini labeling (IPTL) is a quantification method which permits relative quantification using quantification points distributed throughout the whole tandem mass spectrometry (MS/MS) spectrum. It is based on the complementary derivatization of peptide termini with different isotopes resulting in isobaric peptides. Here, we use our recently developed software package IsobariQ to investigate how processing and data analysis parameters can improve IPTL data. Deisotoping provided cleaner MS/MS spectra and improved protein identification and quantification. Denoising should be used with caution because it may remove highly regulated ion pairs. An outlier detection algorithm on the ratios within every individual MS/MS spectrum was beneficial in removing false-positive quantification points. MS/MS spectra using IPTL typically contain two peptide series with complementary labels resulting in lower Mascot ion scores than non-labeled equivalent peptides. To avoid this penalty, the two chemical modifications for IPTL were specified as variables including satellite neutral losses of tetradeuterium with positive loss for the heavy isotopes and negative loss for the light isotopes. Thus, the less dominant complementary ion series were not considered for the scoring, which improved the ion scores significantly. In addition, we showed that IPTL was suitable for fragmentation by electron transfer dissociation (ETD) and higher energy collisionally activated dissociation (HCD) besides the already reported collision-induced dissociation (CID). Notably, ETD and HCD data can be identified and quantified using IsobariQ. ETD outperformed CID and HCD only for charge states ≥4+ but yielded in total fewer protein identifications and quantifications. In contrast, the high-resolution information of HCD fragmented peptides provided most identification and quantification results using the same scan speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CID:

Collision-induced dissociation

ETD:

Electron transfer dissociation

HCD:

Higher energy collisionally activated dissociation

ICAT:

Isotope-coded affinity tagging

ICPL:

Isotope-coded protein labeling

IPTL:

Isobaric peptide termini labeling

iTRAQ:

Isobaric tagging for relative and absolute quantification

LC:

Liquid chromatography

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

SILAC:

Stable isotope labeling with amino acid in cell culture

STLC:

S-Trityl-l-cysteine

TMT:

Tandem mass tagging

References

  1. Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031. doi:10.1007/s00216-007-1486-6

    Article  CAS  Google Scholar 

  2. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12):952–958. doi:10.1038/nrm2067

    Article  CAS  Google Scholar 

  3. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999. doi:10.1038/13690

    Article  CAS  Google Scholar 

  4. Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5(1):4–15. doi:10.1002/pmic.200400873

    Article  CAS  Google Scholar 

  5. Capelo JL, Carreira RJ, Fernandes L, Lodeiro C, Santos HM, Simal-Gandara J (2010) Latest developments in sample treatment for 18O-isotopic labeling for proteomics mass spectrometry-based approaches: a critical review. Talanta 80(4):1476–1486. doi:10.1016/j.talanta.2009.04.053

    Article  CAS  Google Scholar 

  6. Treumann A, Thiede B (2010) Isobaric protein and peptide quantification: perspectives and issues. Expert Rev Proteomics 7(5):647–653. doi:10.1586/epr.10.29

    Article  CAS  Google Scholar 

  7. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  Google Scholar 

  8. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169. doi:10.1074/mcp.M400129-MCP200

    Article  CAS  Google Scholar 

  9. Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8(11):5347–5355. doi:10.1021/pr900634c

    Article  CAS  Google Scholar 

  10. Christoforou A, Lilley KS (2011) Taming the isobaric tagging elephant in the room in quantitative proteomics. Nat Methods 8(11):911–913. doi:10.1038/nmeth.1736

    Article  CAS  Google Scholar 

  11. Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8(11):937–940. doi:10.1038/nmeth.1714

    Article  CAS  Google Scholar 

  12. Wenger CD, Lee MV, Hebert AS, McAlister GC, Phanstiel DH, Westphall MS, Coon JJ (2011) Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods 8(11):933–935. doi:10.1038/nmeth.1716

    Article  CAS  Google Scholar 

  13. Arntzen MO, Koehler CJ, Treumann A, Thiede B (2011) Quantitative proteome analysis using isobaric peptide termini labeling (IPTL). Methods Mol Biol 753:65–76. doi:10.1007/978-1-61779-148-2_5

    Article  CAS  Google Scholar 

  14. Koehler CJ, Strozynski M, Kozielski F, Treumann A, Thiede B (2009) Isobaric peptide termini labeling for MS/MS-based quantitative proteomics. J Proteome Res 8(9):4333–4341. doi:10.1021/pr900425n

    Article  CAS  Google Scholar 

  15. Arntzen MO, Koehler CJ, Barsnes H, Berven FS, Treumann A, Thiede B (2011) IsobariQ: software for isobaric quantitative proteomics using IPTL, iTRAQ, and TMT. J Proteome Res 10(2):913–920. doi:10.1021/pr1009977

    Article  CAS  Google Scholar 

  16. Koehler CJ, Arntzen MO, Strozynski M, Treumann A, Thiede B (2011) Isobaric peptide termini labeling utilizing site-specific N-terminal succinylation. Anal Chem 83(12):4775–4781. doi:10.1021/ac200229w

    Article  CAS  Google Scholar 

  17. Coon JJ (2009) Collisions or electrons? Protein sequence analysis in the 21st century. Anal Chem 81(9):3208–3215. doi:10.1021/ac802330b

    Article  CAS  Google Scholar 

  18. Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE, Shabanowitz J, Hunt DF (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764(12):1811–1822. doi:10.1016/j.bbapap.2006.10.003

    Article  CAS  Google Scholar 

  19. Frese CK, Altelaar AF, Hennrich ML, Nolting D, Zeller M, Griep-Raming J, Heck AJ, Mohammed S (2011) Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J Proteome Res 10(5):2377–2388. doi:10.1021/pr1011729

    Article  CAS  Google Scholar 

  20. Kozielski F, Riaz T, DeBonis S, Koehler CJ, Kroening M, Panse I, Strozynski M, Donaldson IM, Thiede B (2011) Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain. Amino Acids 41(2):363–385. doi:10.1007/s00726-010-0649-5

    Article  CAS  Google Scholar 

  21. Kozielski F, Skoufias DA, Indorato RL, Saoudi Y, Jungblut PR, Hustoft HK, Strozynski M, Thiede B (2008) Proteome analysis of apoptosis signaling by S-trityl-l-cysteine, a potent reversible inhibitor of human mitotic kinesin Eg5. Proteomics 8(2):289–300. doi:10.1002/pmic.200700534

    Article  CAS  Google Scholar 

  22. Chalkley RJ, Medzihradszky KF, Lynn AJ, Baker PR, Burlingame AL (2010) Statistical analysis of peptide electron transfer dissociation fragmentation mass spectrometry. Anal Chem 82(2):579–584. doi:10.1021/ac9018582

    Article  CAS  Google Scholar 

  23. Sun RX, Dong MQ, Song CQ, Chi H, Yang B, Xiu LY, Tao L, Jing ZY, Liu C, Wang LH, Fu Y, He SM (2010) Improved peptide identification for proteomic analysis based on comprehensive characterization of electron transfer dissociation spectra. J Proteome Res 9(12):6354–6367. doi:10.1021/pr100648r

    Article  CAS  Google Scholar 

  24. Good DM, Wirtala M, McAlister GC, Coon JJ (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6(11):1942–1951. doi:10.1074/mcp.M700073-MCP200

    Article  CAS  Google Scholar 

  25. Jedrychowski MP, Huttlin EL, Haas W, Sowa ME, Rad R, Gygi SP (2011) Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 10(12):M111 009910. doi:10.1074/mcp.M111.009910

    Google Scholar 

Download references

Acknowledgments

We would like to thank Yue Xuan (Thermo Fisher Scientific, Bremen, Germany) and Olav Mjaavatten and Frode Berven (PROBE, Bergen, Norway) for performing the measurements on their LTQ-Orbitrap Velos Pro instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Thiede.

Additional information

Christian J. Koehler and Magnus Ø. Arntzen contributed equally to this work.

Published in the topical issue Quantitative Mass Spectrometry in Proteomics with guest editors Bernhard Kuster and Marcus Bantscheff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1001 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehler, C.J., Arntzen, M.Ø., Treumann, A. et al. Comparison of data analysis parameters and MS/MS fragmentation techniques for quantitative proteome analysis using isobaric peptide termini labeling (IPTL). Anal Bioanal Chem 404, 1103–1114 (2012). https://doi.org/10.1007/s00216-012-5949-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5949-z

Keywords

Navigation