Skip to main content
Log in

Biomolecule immobilization techniques for bioactive paper fabrication

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Research into paper-based sensors or functional materials that can perform analytical functions with active recognition capabilities is rapidly expanding, and significant research effort has been made into the design and fabrication of bioactive paper at the biosensor level to detect potential health hazards. A key step in the fabrication of bioactive paper is the design of the experimental and operational procedures for the immobilization of biomolecules such as antibodies, enzymes, phages, cells, proteins, synthetic polymers and DNA aptamers on a suitably prepared paper membrane. The immobilization methods are concisely categorized into physical absorption, bioactive ink entrapment, bioaffinity attachment and covalent chemical bonding immobilization. Each method has individual immobilization characteristics. Although every biomolecule–paper combination has to be optimized before use, the bioactive ink entrapment method is the most commonly used approach owing to its general applicability and biocompatibility. Currently, there are four common applications of bioactive paper: (1) paper-based bioassay or paper-based analytical devices for sample conditioning; (2) counterfeiting and countertempering in the packaging and construction industries; (3) pathogen detection for food and water quality monitoring; and (4) deactivation of pathogenic bacteria using antimicrobial paper. This article reviews and compares the different biomolecule immobilization techniques and discusses current trends. Current, emerging and future applications of bioactive paper are also discussed.

Trend Paper: Biomolecule immobilization techniques for bioactive paper fabrication

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cormer JP (1956) Anal Chem 28:1748–1750

    Article  Google Scholar 

  2. Free AH, Adams EC, Kercher ML, Free HM, Cook MH (1957) Clin Chem 3(3):163–168

    CAS  Google Scholar 

  3. Hawkes R, Niday E, Gordon J (1982) Anal Biochem 119:142–147

    Article  CAS  Google Scholar 

  4. Mabey D, Peeling RW, Ustianowski A, Perkins MD (2004) Nat Rev 2:231–240

    Article  CAS  Google Scholar 

  5. McMaster University, ‘Bioactive’ Paper Holds Promise For Improved Global Health Safety, ScienceDaily. Retrieved February 16, 2012, from http://www.sciencedaily.com-/releases/2007/05/070523124319.htm

  6. Tom Erho, “New methods for manufacturing bioactive paper products: Numerous application possibilities”, VTT Newsletter. Retrieved February 16, 2012, from http://www.vtt.fi/newsletter/032007art09.jsp

  7. Bracher PJ, Gupta M, Whitesides GM (2009) Adv Mater 21:445–450

    Article  CAS  Google Scholar 

  8. Illergard J, Wagberg L, Monica EK (2011) Colloids Surf B Biointerfaces 88:115–120

    Article  CAS  Google Scholar 

  9. Li X, Tian J, Shen W (2008) Anal Chem 80(23):9131–9134

    Article  CAS  Google Scholar 

  10. Abe K, Suzuki K, Citterio D (2008) Anal Chem 80:6928–6934

    Article  CAS  Google Scholar 

  11. Pelton R (1993) Nord Pulp Paper Res J 11:113–119

    Article  Google Scholar 

  12. Lehtio L, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) Proc Natl Acad Sci USA 100(2):484–489

    Article  CAS  Google Scholar 

  13. Halder E, Chattoraj DK, Das KP (2005) Biopolymers 77:286–295

    Article  CAS  Google Scholar 

  14. Di Risio S, Yan N (2007) Macromol Rapid Commun 28:1934–1940

    Article  Google Scholar 

  15. Su S, Nutiu R, Filipe CDM, Li R, Pelton R (2007) Langmuir 23:1300–1302

    Article  CAS  Google Scholar 

  16. Su S, Ali MM, Filipe CDM, Li Y, Pelton R (2008) Biomacromolecules 9:935–941

    Article  CAS  Google Scholar 

  17. Wang J, Pelton R, Veldhuis LJ, MacKenzie CR, Hall JC, Filipe CDM (2010) Appita J 63(1):32–36

    CAS  Google Scholar 

  18. Tolba M, Brovko LY, Minikh O, Griffiths MW (2008) In: Nanotech 2008. NSTI, Boston, pp 449–452

    Google Scholar 

  19. Sunil S, Desai JD, Surekha D (2001) J Appl Polym Sci 82(5):1299–1305

    Article  Google Scholar 

  20. Chen JP, Lin WS, Chang MF (2002) J Am Oil Chem Soc 79(30):309–314

    Article  CAS  Google Scholar 

  21. Ortega N, Bust MD, Perez-Mateos M (1998) J Chem Technol Biotechnol 73(1):7–12

    Article  CAS  Google Scholar 

  22. Pichot C, Taniguchi T, Delair T, Elaissari A (2004) Curr Opin Colloid Interface Sci 9(3):213–221

    Article  CAS  Google Scholar 

  23. Heikkinen JJ, Kivimaki L, Maatta JAE, Makela I, Hakalahti L, Takkinen K, Kulomaa MS, Hytonen VP, Hormi OEO (2011) Colloids Surf B Biointerfaces 87:409–414

    Article  CAS  Google Scholar 

  24. Terpe K (2003) Appl Microbiol Biotechnol 60:523–533

    CAS  Google Scholar 

  25. Cao Y, Zhang Q, Wang C, Zhu Y, Bai G (2007) J Chromatogr A 1149:228–235

    Article  CAS  Google Scholar 

  26. Lewis W, Moore EK, Windust J, Bushell D, Parry N (2006) Biotechnol Bioeng 94:625–632

    Article  CAS  Google Scholar 

  27. Craig SJ, Shu A, Xu Y, Foong FC, Nordon R (2007) Protein Eng Des Sel 20:235–241

    Article  CAS  Google Scholar 

  28. Minikh O, Tolba M, Brovko LY, Griffiths MW (2010) J Microbiol Methods 82:177–183

    Article  CAS  Google Scholar 

  29. Boese BJ, Corbino K, Breaker RR (2008) Nucleosides Nucleotides Nucleic Acids 27:949–966

    Article  CAS  Google Scholar 

  30. Bora U, Sharma P, Kannan K, Nahar P (2006) J Biotechnol 126:220–229

    Article  CAS  Google Scholar 

  31. Tiller J, Berlin P, Klemm D (1999) Macromol Chem Phys 200:1–9

    Article  CAS  Google Scholar 

  32. Nutiu R, Li YF (2003) J Am Chem Soc 125:4771–4778

    Article  CAS  Google Scholar 

  33. Martinez AW, Philips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM (2008) Anal Chem 80:3699–3707

    Article  CAS  Google Scholar 

  34. Zhao WA, Ali MM, Aguirre SD, Brook MA, Li YF (2008) Anal Chem 80:8431–8437

    Article  CAS  Google Scholar 

  35. Anonymous (2005) Active Intell Pack News 3(23)

  36. Dankovich TA, Gray DG (2011) Environ Sci Technol 45:1992–1998

    Article  CAS  Google Scholar 

  37. Anany H, Chen W, Pelton R, Griffiths MW (2011) Appl Environ Microbiol 77(18):6379–6387

    Article  CAS  Google Scholar 

  38. Pelton R, Su S, Filipe C, Li Y (2011) Method of producing bioactive paper. US Patent Application 20110059441 A1

  39. Lazcka O, Campo FJD, Munoz FX (2007) Biosens Bioelectron 22:1205–1217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanzhi Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, F., Hu, Y.F. Biomolecule immobilization techniques for bioactive paper fabrication. Anal Bioanal Chem 403, 7–13 (2012). https://doi.org/10.1007/s00216-012-5821-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5821-1

Keywords

Navigation