Abstract
Iodine and bromine species participate in key atmospheric reactions including the formation of cloud condensation nuclei and ozone depletion. We present a novel method coupling a high-performance liquid chromatography with ion chromatography and inductively coupled plasma mass spectrometry, which allows the determination of iodine (I) and bromine (Br) species (IO −3 , I−, Br−, BrO −3 ) at the picogram-per-gram levels presents in Antarctic ice. Chromatographic separation was achieved using an IONPAC® AS16 Analytical Column with NaOH as eluent. Detection limits for I and Br species were 5 to 9 pg g−1 with an uncertainty of less than 2.5% for all considered species. Inorganic iodine and bromine species have been determined in Antarctic ice core samples, with concentrations close to the detection limits for iodine species, and approximately 150 pg g−1 for Br−. Although iodate (IO −3 ) is the most abundant iodine species in the atmosphere, only the much rarer iodide (I−) species was present in Antarctic Holocene ice. Bromine was found to be present in Antarctic ice as Br−.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255(5043):423–430
Pechtl S, Lovejoy ER, Burkholder JB, von Glasow R (2006) Modeling the possible role of iodine oxides in atmospheric new particle formation. Atmos Chem Phys 6:505–523
McFiggans G, Coe H, Burgess R, Allan J, Cubison M, Alfarra MR, Saunders R, Saiz-Lopez A, Plane JMC, Wevill DJ, Carpenter LJ, Rickard AR, Monks PS (2004) Direct evidence for coastal iodine particles from Laminaria macroalgae—linkage to emissions of molecular iodine. Atmos Chem Phys 4:701–713
Calvert JG, Lindberg SE (2004) Potential influence of iodine-containing compounds on the chemistry of the troposphere in the polar spring. I. Ozone depletion. Atmos Environ 38(30):5087–5104. doi:10.1016/j.atmosenv.2004.05.049
Gilfedder BS, Petri M, Biester H (2007) Iodine and bromine speciation in snow and the effect of orographically induced precipitation. Atmos Chem Phys 7(10):2661–2669
McFiggans G (2000) A model study of iodine chemistry in the marine boundary layer. J Geophys Res 105:14371–14386
Hou X, Hansen V, Aldahan A, Possnert G, Lind O, Lujaniene G (2009) A review on speciation of iodine-129 in the environmental and biological samples. Anal Chim Acta 632(2):181–196
Wong GTF (1991) The marine geochemistry of iodine. Rev Aquat Sci 4(1):45–73
Tian RC, Nicolas E (1995) Iodine speciation in the northwestern Mediterranean Sea, method and vertical profile. Mar Chem 48(2):151–156
De Luca RA, Herms FW, Wagener K (1990) The cycling of iodine as iodate and iodide in a tropical estuarine system. Mar Chem 29:77–93
Luther GW III, Campbell T (1991) Iodine speciation in the water column of the Black Sea. Deep Sea Res A Oceanogr Res Pap 38(Supplement 2):S875–S882, 0
Vogt R, Sander R, Von Glasow R, Crutzen PJ (1999) Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: a model study. J Atmos Chem 32(3):375–395
Saiz-Lopez A, Plane J (2004) Novel iodine chemistry in the marine boundary layer. Geophys Res Lett 31(4):L04112. doi:10.1029/2003GL019215
Baker AR (2004) Inorganic iodine speciation in tropical Atlantic aerosol. Geophys Res Lett 31(23):L23S02. doi:10.1029/2004gl020144
Sander R, Keene WC, Pszenny AAP, Arimoto R, Ayers GP, Baboukas E, Cainey JM, Crutzen PJ, Duce RA, Hoenninger G, Huebert BJ, Maenhaut W, Mihalopoulos N, Turekian VC, Van Dingenen R (2003) Inorganic bromine in the marine boundary layer: a critical review. Atmos Chem Phys 3(5):1301–1336. doi:10.5194/acp-3-1301-2003
Greenwood NN, Earnshaw A (2005) Chemistry of the elements. Elsevier, Amsterdam, The Netherlands, 1342
Salawitch R (2006) Biogenic bromine. Nature 439(7074):275–277
Simpson WR, Alvarez-Aviles L, Douglas TA, Sturm M, Domine F (2005) Halogens in the coastal snow pack near Barrow, Alaska: evidence for active bromine air-snow chemistry during springtime. Geophys Res Lett 32(4):L04811. doi:10.1029/2004gl021748
Ayers GP, Gillett RW, Cainey JM, Dick AL (1999) Chloride and bromide loss from sea-salt particles in Southern Ocean Air. J Atmos Chem 33(3):299–319. doi:10.1023/a:1006120205159
Baker J, Reeves C, Nightingale P, Penkett S, Gibb S, Hatton A (1999) Biological production of methyl bromide in the coastal waters of the North Sea and open ocean of the northeast Atlantic. Mar Chem 64(4):267–285
Laturnus F, Adams FC, Wiencke C (1998) Methyl halides from Antarctic macroalgae. Geophys Res Lett 25(6):773–776. doi:10.1029/98gl00490
Baker A, Tunnicliffe C, Jickells T (2001) Iodine speciation and deposition fluxes from the marine atmosphere. J Geophys Res 106(D22):28743
Gilfedder BS, Lai SC, Petri M, Biester H, Hoffmann T (2008) Iodine speciation in rain, snow and aerosols. Atmos Chem Phys 8(20):6069–6084
Simpson WR, von Glasow R, Riedel K, Anderson P, Ariya P, Bottenheim J, Burrows J, Carpenter LJ, Friess U, Goodsite ME, Heard D, Hutterli M, Jacobi HW, Kaleschke L, Neff B, Plane J, Platt U, Richter A, Roscoe H, Sander R, Shepson P, Sodeau J, Steffen A, Wagner T, Wolff E (2007) Halogens and their role in polar boundary-layer ozone depletion. Atmos Chem Phys 7(16):4375–4418
Wolff E, Barbante C, Becagli S, Bigler M, Boutron C, Castellano E, De Angelis M, Federer U, Fischer H, Fundel F (2010) Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat Sci Rev 29(1–2):285–295
Gilfedder BS, Petri M, Biester H (2006) Iodine speciation and redox cycling in limnic systems: case studies from Lake Constance and the Mummelsee. Geochim Cosmochim Acta 70(18):A202–A202. doi:10.1016/J.Gca.2006.06.408
Liu W, Yang H, Li B, Xu S (2011) Determination of bromine and iodine speciation in drinking water using high performance liquid chromatography-inductively coupled plasma mass spectrometry. Geostand Geoanal Res 35(1):69–74
Huang Z, Ito K, Timerbaev A, Hirokawa T (2004) Speciation studies by capillary electrophoresis—simultaneous determination of iodide and iodate in seawater. Anal Bioanal Chem 378(7):1836–1841. doi:10.1007/s00216-004-2506-4
Lyon TDB, Robin PA, Watson WS, Littlejohn D (2005) Determination of elevated concentrations of bromine in serum by ICP-MS and ICP-OES. J Anal At Spectrom 20(8):757–759
Spokes LJ, Liss PS (1996) Photochemically induced redox reactions in seawater. II. Nitrogen and iodine. Mar Chem 54:1–10
Saltzman ES, Aydin M, Tatum C, Williams MB (2008) 2,000-year record of atmospheric methyl bromide from a South Pole ice core. J Geophys Res 113(D5):D05304. doi:10.1029/2007jd008919
Saiz-Lopez A, Plane JMC, Baker AR, Carpenter LJ, von Glasow R, Gomez Martin JC, McFiggans G, Saunders RW (2011) Atmospheric chemistry of iodine. Chem Rev. doi:10.1021/cr200029u
Slaets S, Laturnus F, Adams FC (1999) Microwave induced plasma atomic emission spectrometry: a suitable detection system for the determination of volatile halocarbons. Fresenius J Anal Chem 364(1):133–140. doi:10.1007/s002160051312
Gabrielli P, Varga A, Barbante C, Boutron C, Cozzi G, Gaspari V, Planchon F, Cairns W, Hong S, Ferrari C, Capodaglio G (2004) Determination of Ir and Pt down to the sub-femtogram per gram level in polar ice by ICP-SFMS using preconcentration and a desolvation system. J Anal At Spectrom 19(7):831–837
Frezzotti M, Bitelli G, de Michelis P, Deponti A, Forieri A, Gandolfi S, Maggi V, Mancini F, Remy F, Tabacco IE, Urbini S, Vittuari L, Zirizzottl A (2004) Geophysical survey at Talos Dome, East Antarctica: the search for a new deep-drilling site. Ann Glaciol 39(1):423–432. doi:10.3189/172756404781814591
Buiron D, Chappellaz J, Stenni B, Frezzotti M, Baumgartner M, Capron E, Landais A, Lemieux-Dudon B, Masson-Delmotte V, Montagnat M, Parrenin F, Schilt A (2010) TALDICE-1 age scale of the Talos Dome deep ice core, East Antarctica. Clim Past Discuss 6:1733–1776
Stenni B, Buiron D, Frezzotti M, Albani S, Barbante C, Bard E, Barnola JM, Baroni M, Baumgartner M, Bonazza M, Capron E, Castellano E, Chappellaz J, Delmonte B, Falourd S, Genoni L, Iacumin P, Jouzel J, Kipfstuhl S, Landais A, Lemieux-Dudon B, Maggi V, Masson-Delmotte V, Mazzola C, Minster B, Montagnat M, Mulvaney R, Narcisi B, Oerter H, Parrenin F, Petit JR, Ritz C, Scarchilli C, Schilt A, Schupbach S, Schwander J, Selmo E, Severi M, Stocker TF, Udisti R (2011) Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nat Geosci 4(1):46–49. doi:10.1038/ngeo1026
Kaufmann PR, Federer U, Hutterli MA, Bigler M, SchuÃàpbach S, Ruth U, Schmitt J, Stocker TF (2008) An improved continuous flow analysis system for high-resolution field measurements on ice cores. Environ Sci Technol 42(21):8044–8050. doi:10.1021/es8007722
Ruth U, Barbante C, Bigler M, Delmonte B, Fischer H, Gabrielli P, Gaspari V, Kaufmann P, Lambert F, Maggi V (2008) Proxies and measurement techniques for mineral dust in Antarctic ice cores. Environ Sci Technol 42(15):5675–5681
Vogt R (1999) Iodine compounds in the atmosphere. In: Fabian P, Singh ON (eds) Reactive halogen compounds in the atmosphere. Springer-Verlag, Berlin
Yang H, Liu W, Li B, Zhang H, Liu X, Chen D (2007) Speciation analysis for iodine in groundwater using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Geostand Geoanal Res 31(4):345–351
Enami S, Vecitis C, Cheng J, Hoffmann M, Colussi A (2007) Global inorganic source of atmospheric bromine. J Phys Chem A 111(36):8749–8752
Chen H, Brandt R, Bandur R, Hoffmann T (2006) Characterization of iodine species in the marine aerosol: to understand their roles in particle formation processes. Front Chem China 1(2):119–129. doi:10.1007/s11458-006-0001-5
Saiz-Lopez A, Saunders R, Joseph D, Ashworth S, Plane J (2004) Absolute absorption cross-section and photolysis rate of I-2. Atmos Chem Phys 4:1443–1450
Acknowledgments
This work was supported by the University of Siena and IDPA-CNR. We are grateful to colleagues at the University of Venice for instrumental and technical assistance and in particular to Dr. Warren Cairns of the IDPA-CNR for the discussion on speciation. The Talos Dome Ice Core Project (TALDICE), a joint European program, is funded by contributions from Italy, France, Germany, Switzerland, and the UK. Logistical support was provided by PNRA. This is TALDICE publication no 17.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the special issue Analytical Science in Italy with guest editor Aldo Roda.
Rights and permissions
About this article
Cite this article
Spolaor, A., Vallelonga, P., Gabrieli, J. et al. Speciation analysis of iodine and bromine at picogram-per-gram levels in polar ice. Anal Bioanal Chem 405, 647–654 (2013). https://doi.org/10.1007/s00216-012-5806-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-012-5806-0
Keywords
Profiles
- Andrea Spolaor View author profile
- Natalie Kehrwald View author profile