Skip to main content
Log in

LC-MS/MS biopharmaceutical glycoanalysis: identification of desirable reference material characteristics

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Glycosylation, the enzymatic addition of carbohydrates to a protein, is one of the most abundant post-translational modifications found in nature. There is variability in the number, location, and identity of glycans attached. As a result, a glycoprotein consists of a number of glycoforms with different combinations of glycans, potentially resulting in different stability, toxicity, and activity. This is especially important in the biopharmaceutical industry where product consistency and safety are vital. Glycoprotein analysis involves numerous mass spectrometry based techniques, each of which provides various aspects of characterization. The current paper describes two commonly used analytical techniques for glycoprotein characterization. In one experiment, nonspecific proteolysis is combined with a two-tiered mass spectrometry approach (MALDI-TOF and LC-MS/MS) to gain glycosylation site and glycan identity. In a second approach, glycans were enzymatically released, labeled with a fluorescent dye, and analyzed using LC-Fluorescence-MS/MS to give glycan identification and relative quantification. The type and degree of information yielded by each method is assessed in an effort to identify desired reference material characteristics for improving biopharmaceutical glycoanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Stanley P, Schachter H, Taniguchi N (2010) N-glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (ed) Essentials of glycobiology, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Springs Harbor

  2. Higgens E (2010) Glycoconjug J 27:211–225

    Article  Google Scholar 

  3. Kawasaki N, Itoh S, Hashii N, Takakura D, Qin Y, Huang XY, Yamaguchi T (2009) Biol Pharm Bull 32:796–800

    Article  CAS  Google Scholar 

  4. van Berkel PHC, Gerritsen J, Perdok G, Valbjorn J, Vink T, van de Winkel JGJ, Parren PWHI (2009) Biotech Prog 25:244–251

    Article  Google Scholar 

  5. Kamoda S, Nomura C, Kinoshita M, Nishiura S, Ishikawa R, Kakehi K, Kawasaki N, Hayakawa T (2004) J Chromatogr A 1050:211–216

    CAS  Google Scholar 

  6. Kamoda S, Ishikawa R, Kakehi K (2006) J Chromatogr A 1133:332–339

    Article  CAS  Google Scholar 

  7. Ma S, Nashabeh W (1999) Anal Chem 71:5185–5192

    Article  CAS  Google Scholar 

  8. Prater BD, Connelly HM, Qin Q, Cockrill SL (2009) Anal Biochem 385:69–79

    Article  CAS  Google Scholar 

  9. Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F (2008) Proteomics 8:2858–2871

    Article  CAS  Google Scholar 

  10. Wuhrer M, Deelder AM, Hokke CH (2005) J Chromatogr B 825:124–133

    Article  CAS  Google Scholar 

  11. Huhn C, Selman MHJ, Ruhaak LR, Deelder AM, Wuhrer M (2009) Proteomics 9:882–913

    Article  CAS  Google Scholar 

  12. An HJ, Peavy TR, Hedrick JL, Lebrilla CB (2003) Anal Chem 75:5628–5637

    Article  CAS  Google Scholar 

  13. An HJ, Tillinghast JS, Woodruff DL, Rocke DM, Lebrilla CB (2006) J Proteome Res 5:2800–2808

    Article  CAS  Google Scholar 

  14. An HJ, Froehlich JW, Lebrilla CB (2009) Curr Opin Chem Biol 13:421–426

    Article  CAS  Google Scholar 

  15. Clowers BH, Dodds ED, Seipert RR, Lebrilla CB (2007) J Proteome Res 6:4032–4040

    Article  CAS  Google Scholar 

  16. Dodds ED, Seipert RR, Clowers BH, German JB, Lebrilla CB (2009) J Proteome Res 8:502–512

    Article  CAS  Google Scholar 

  17. Yu YQ, Fournier J, Gilar M, Gebler JC (2007) Anal Chem 79:1731–1738

    Article  CAS  Google Scholar 

  18. Juhasz P, Martin SA (1997) Int J Mass Spectrom 169:217–230

    Article  Google Scholar 

  19. Liu X, McNally DJ, Nothaft H, Szymanski CM, Brisson JR, Li JJ (2006) Anal Chem 78:6081–6087

    Article  CAS  Google Scholar 

  20. Liu X, Chan K, Chu IK, Li JJ (2008) Carb Res 343:2870–2877

    Article  CAS  Google Scholar 

  21. Temporini C, Perani E, Calleri E, Dolcini L, Lubda D, Caccialanza G, Massolini G (2007) Anal Chem 79:355–363

    Article  CAS  Google Scholar 

  22. Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM (2005) Anal Chem 77:886–894

    Article  CAS  Google Scholar 

  23. Zauner G, Koeleman CAM, Deelder AM, Wuhrer M (2010) J Sep Sci 33:903–910

    Article  CAS  Google Scholar 

  24. Nwosu CC, Seipert RR, Strum JS, Hua SS, Zivkovic AM, German BJ, Lebrilla CB (2011) J Proteome Res 10:2612–2624

    Article  CAS  Google Scholar 

  25. Nwosu CC, Seipert RR, Strum JS, Hua SS, An HJ, Zivkovic AM, German BJ, Lebrilla CB (2011) J Proteome Res 10:2612–2624

    Article  CAS  Google Scholar 

  26. Hua S, Nwosu CC, Strum JS, Seipert RR, An HJ, Zivkovic AM, German BJ, Lebrilla CB (2011) Anal Bioanal Chem. doi:10.1007/s00216-011-5109-x

  27. Chen XY, Flynn GC (2007) Anal Biochem 370:147–161

    Article  CAS  Google Scholar 

  28. Flynn GC, Chen XY, Liu YD, Shah B, Zhang ZQ (2010) Mol Immunol 47:2074–2082

    Article  CAS  Google Scholar 

  29. Ito H, Takegawa Y, Deguchi K, Nagai S, Nakagawa H, Shinohara Y, Nishimura SI (2006) Rapid Commun Mass Spectrom 20:3557–3565

    Article  CAS  Google Scholar 

  30. Takegawa Y, Deguchi K, Ito S, Yoshioka S, Sano A, Yoshinari K, Kobayashi K, Nakagawa H, Monde K, Nishimura SI (2004) Anal Chem 76:7294–7303

    Article  CAS  Google Scholar 

  31. Takegawa Y, Ito S, Yoshioka S, Deguchi K, Nakagawa H, Monde K, Nishimura SI (2004) Rapid Commun Mass Spectrom 18:385–391

    Article  CAS  Google Scholar 

  32. Reinhold V, Ashline DJ, Zhang H (2010) Unraveling the structural details of the glycoproteome by ion trap mass spectrometry. In: Practical aspects trapped ion mass spectrometry. Taylor and Francis, Boca Raton

    Google Scholar 

  33. Huang W, Li C, Li B, Umekawa M, Yamamoto K, Zhang X, Wang LX (2009) J Am Chem Soc 131:2214–2223

    Article  CAS  Google Scholar 

  34. Huang W, Yang QA, Umekawa M, Yamamoto K, Wang LX (2010) Chembiochem 11:1350–1355

    Article  CAS  Google Scholar 

  35. Schiel JE, Lowenthal MS, Phinney KW (2011) J Mass Spectrom 46:649–657

    Article  CAS  Google Scholar 

  36. de Leoz ML, Young LJ, An HJ, Kronewitter SR, Kim J, Miyamoto S, Borowsky AD, Chew HK, Lebrilla CB (2011) High-mannose glycans are elevated during breast cancer progression. Mol Cell Proteom 10(1). doi:10.1074/mcp.M110.002717

  37. Ivancic MM, Gadgil HS, Halsall HB, Treuheit MJ (2010) Anal Biochem 400:25–32

    Article  CAS  Google Scholar 

  38. Rebecchi KR, Wenke JL, Go EP, Desaire H (2009) J Am Soc Mass Spectrom 20:1048–1059

    Article  CAS  Google Scholar 

  39. Atwood JA, Cheng L, Alvarez-Manilla G, Warren NL, York WS, Orlando R (2008) J Proteome Res 7:367–374

    Article  CAS  Google Scholar 

  40. Orlando R, Lim JM, Atwood JA, Angel PM, Fang M, Aoki K, Alvarez-Manilla G, Moremen KW, York WS, Tiemeyer M, Pierce M, Dalton S, Wells L (2009) J Proteome Res 8:3816–3823

    Article  CAS  Google Scholar 

  41. Zhang P, Zhang Y, Xue XD, Wang CJ, Wang ZF, Huang LJ (2011) Anal Biochem 418:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Carlito Lebrilla for technical guidance regarding pronase digestion and Dr. Illarion Turko for assistance performing MALDI-MS.

Disclaimer

Commercial equipment, instruments, and materials are identified throughout this paper to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by NIST nor does it imply that the equipment, instruments, or materials are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Schiel.

Additional information

Published in the special issue Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert, J. Bettmer, T. Hasegawa, Q. Wang and Y. Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiel, J.E., Au, J., He, HJ. et al. LC-MS/MS biopharmaceutical glycoanalysis: identification of desirable reference material characteristics. Anal Bioanal Chem 403, 2279–2289 (2012). https://doi.org/10.1007/s00216-012-5749-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5749-5

Keywords

Navigation