Skip to main content

Advertisement

Log in

Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nucleic acid biosensors have a growing number of applications in genetics and biomedicine. This contribution is a critical review of the current state of the art concerning the use of nucleic acid analogues, in particular peptide nucleic acids (PNA) and locked nucleic acids (LNA), for the development of high-performance affinity biosensors. Both PNA and LNA have outstanding affinity for natural nucleic acids, and the destabilizing effect of base mismatches in PNA- or LNA-containing heterodimers is much higher than in double-stranded DNA or RNA. Therefore, PNA- and LNA-based biosensors have unprecedented sensitivity and specificity, with special applicability in DNA genotyping. Herein, the most relevant PNA- and LNA-based biosensors are presented, and their advantages and their current limitations are discussed. Some of the reviewed technology, while promising, still needs to bridge the gap between experimental status and the harder reality of biotechnological or biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification - (Technical report). Pure Appl Chem 71(12):2333–2348. doi:10.1351/pac199971122333

    CAS  Google Scholar 

  2. Newman JD, Tigwell LJ, Turner APF, Warner PJ (2004) Biosensors: a clearer view. Cranfield University

  3. Zourob M (2010) Recognition receptors in biosensors Springer. N Y. doi:10.1007/978-1-4419-0919-0

  4. Labuda J, Oliveira Brett AM, Evtugyn G, Fojta M, Mascini M, Ozsoz M, Palchetti I, Palecek E, Wang J (2010) Electrochemical nucleic acid-based biosensors: concepts, terms, and methodology (IUPAC Technical report). Pure Appl Chem 82(5):1161–1187. doi:10.1351/pac-rep-09-08-16

    CAS  Google Scholar 

  5. Juskowiak B (2011) Nucleic acid-based fluorescent probes and their analytical potential. Anal Bioanal Chem 399(9):3157–3176. doi:10.1007/s00216-010-4304-5

    CAS  Google Scholar 

  6. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi:10.1038/346818a0

    CAS  Google Scholar 

  7. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    CAS  Google Scholar 

  8. Rasooly A, Herold K (2009) Biosensors and biodetection: methods and protocols volume1: optical-based detectors, vol 503. Humana Press. doi:10.1007/978-1-60327-567-5

  9. Rasooly A, Herold K (2009) Biosensors and biodetection: methods and protocols volume 2: electrochemical and mechanical detectors, lateral flow and ligands for biosensors vol 504. Humana Press. doi:10.1007/978-1-60327-569-9

  10. Poulsen L, Soe MJ, Moller LB, Dufva M (2011) Investigation of parameters that affect the success rate of microarray-based allele-specific hybridization assays. PLoS One 6(3):e14777. doi:10.1371/journal.pone.0014777

    CAS  Google Scholar 

  11. Benner SA, Battersby TR, Eschgfaller B, Hutter D, Kodra JT, Lutz S, Arslan T, Baschlin DK, Blattler M, Egli M, Hammer C, Held HA, Horlacher J, Huang Z, Hyrup B, Jenny TF, Jurczyk SC, Konig M, von Krosigk U, Lutz MJ, MacPherson LJ, Moroney SE, Muller E, Nambiar KP, Piccirilli JA, Switzer CY, Vogel JJ, Richert C, Roughton AL, Schmidt J, Schneider KC, Stackhouse J (1998) Redesigning nucleic acids. Pure Appl Chem 70(2):263–266. doi:10.1351/pac199870020263

    CAS  Google Scholar 

  12. Geyer CR, Battersby TR, Benner SA (2003) Nucleobase pairing in Watson-Crick-like genetic expanded information systems. Structure 11(12):1485–1498. doi:10.1016/j.str.2003.11.008

    CAS  Google Scholar 

  13. Schneider KC, Benner SA (1990) Oligonucleotides containing flexible nucleoside analogs. J Am Chem Soc 112(1):453–455. doi:10.1021/ja00157a073

    CAS  Google Scholar 

  14. Zhang S, Chaput JC (2010) Synthesis of Glycerol Nucleic Acid (GNA) phosphoramidite monomers and oligonucleotide polymers. In: Current protocols in nucleic acid chemistry. John Wiley & Sons, Inc. doi:10.1002/0471142700.nc0440s42

  15. Pitsch S, Wendeborn S, Jaun B, Eschenmoser A (1993) Why pentose- and not hexose-nucleic acids?? Part VII. Pyranosyl-RNA (‘p-RNA’). Preliminary communication. Helvetica Chimica Acta 76(6):2161–2183. doi:10.1002/hlca.19930760602

    CAS  Google Scholar 

  16. Ilin S, Schlonvogt I, Ebert MO, Jaun B, Schwalbe H (2002) Comparison of the NMR spectroscopy solution structures of pyranosyl-RNA and its nucleo-delta-peptide analogue. ChemBioChem 3(1):93–99. doi:10.1002/1439-7633(20020104)3:1<93::aid-cbic93>3.0.co;2-0

    CAS  Google Scholar 

  17. Micura R, Kudick R, Pitsch S, Eschenmoser A (1999) Chemistry of Pyranosyl-RNA, part 8. Chemistry of alpha-aminonitriles, part 24. Opposite orientation of backbone inclination in pyranosyl-RNA and homo-DNA correlates with opposite directionality of duplex properties. Angew Chem Int Ed 38(5):680–683. doi:10.1002/(sici)1521-3773(19990301)38:5<680::aid-anie680>3.0.co;2-c

    CAS  Google Scholar 

  18. Schoning KU, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A (2000) Chemical etiology of nucleic acid structure: the alpha-threofuranosyl-(3′ → 2′) oligonucleotide system. Science 290(5495):1347–1351. doi:10.1126/science.290.5495.1347

    CAS  Google Scholar 

  19. Ahn DR, Egger A, Lehmann C, Pitsch S, Leumann CJ (2002) Bicyclo 3.2.1 amide-DNA: A chiral, nonchiroselective base-pairing system. Chem- Eur J 8(23):5312–5322. doi:10.1002/1521-3765(20021202)8:23<5312::aid-chem5312>3.0.co;2-m

    CAS  Google Scholar 

  20. Tarkoy M, Bolli M, Schweizer B, Leumann C (1993) Nucleic-acid analogs with constraint conformational flexibility in the sugar-phosphate backbone (bicyclo-DNA).1. Preparation of (3′s,5′r)-2′-deoxy-3′,5′-ethano-alpha-beta-d-ribonucleosides (bicyclonucleosides). Helvetica Chimica Acta 76(1):481–510. doi:10.1002/hlca.19930760132

    Google Scholar 

  21. Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, Olsen CE, Wengel J (1998) LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54(14):3607–3630

    CAS  Google Scholar 

  22. Obika S, Nanbu D, Hari Y, Andoh J, Morio K, Doi T, Imanishi T (1998) Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2 ′-O,4 ′-C-methyleneribonucleosides. Tetrahedron Lett 39(30):5401–5404. doi:10.1016/s0040-4039(98)01084-3

    CAS  Google Scholar 

  23. Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8(1):1–7

    CAS  Google Scholar 

  24. Doessing H, Vester B (2011) Locked and unlocked nucleosides in functional nucleic acids. Molecules 16(6):4511–4526

    CAS  Google Scholar 

  25. Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21(2):74–81

    CAS  Google Scholar 

  26. Schneider KC, Benner SA (1990) Building-blocks for oligonucleotide analogs with dimethylene-sulfide, dimethylene-sulfoxide, and dimethylene-sulfone groups replacing phosphodiester linkages. Tetrahedron Lett 31(3):335–338. doi:10.1016/s0040-4039(00)94548-9

    CAS  Google Scholar 

  27. Benner SA (2004) Understanding nucleic acids using synthetic chemistry. Acc Chem Res 37(10):784–797. doi:10.1021/ar040004z

    CAS  Google Scholar 

  28. Huang Z, Schneider KC, Benner SA (1993) Oligonucleotide analogs with dimethylenesulfide, -sulfoxide, and -sulfone groups replacing phosphodiester linkages protocols for oligonucleotides and analogs. In: Agrawal S (ed), vol 20. Methods in molecular biology. Humana Press, pp 315-353. doi:10.1385/0-89603-281-7:315

  29. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037):1497–1500. doi:10.1126/science.1962210

    CAS  Google Scholar 

  30. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the watson-crick hydrogen-bonding rules. Nature 365(6446):566–568. doi:10.1038/365566a0

    CAS  Google Scholar 

  31. Menchise V, De Simone G, Tedeschi T, Corradini R, Sforza S, Marchelli R, Capasso D, Saviano M, Pedone C (2003) Insights into peptide nucleic acid (PNA) structural features: the crystal structure of a D-lysine-based chiral PNA-DNA duplex. Proc Natl Acad Sci U S A 100(21):12021–12026. doi:10.1073/pnas.2034746100

    CAS  Google Scholar 

  32. Wittung P, Nielsen PE, Buchardt O, Egholm M, Norden B (1994) DNA-like double helix formed by peptide nucleic-acid. Nature 368(6471):561–563. doi:10.1038/368561a0

    CAS  Google Scholar 

  33. Ura Y, Beierle JM, Leman LJ, Orgel LE, Ghadiri MR (2009) Self-assembling sequence-adaptive peptide nucleic acids. Science 325(5936):73–77. doi:10.1126/science.1174577

    CAS  Google Scholar 

  34. Ratilainen T, Holmen A, Tuite E, Nielsen PE, Norden B (2000) Thermodynamics of sequence-specific binding of PNA to DNA. Biochemistry 39(26):7781–7791. doi:10.1021/bi000039g

    CAS  Google Scholar 

  35. Eriksson M, Nielsen PE (1996) Solution structure of a peptide nucleic acid DNA duplex. Nat Struct Biol 3(5):410–413. doi:10.1038/nsb0596-410

    CAS  Google Scholar 

  36. Brown SC, Thomson SA, Veal JM, Davis DG (1994) NMR solution structure of a peptide nucleic-acid complexed with RNA. Science 265(5173):777–780. doi:10.1126/science.7519361

    CAS  Google Scholar 

  37. Rasmussen H, Sandholm J (1997) Crystal structure of a peptide nucleic acid (PNA) duplex at 1.7 angstrom resolution. Nat Struct Biol 4(2):98–101. doi:10.1038/nsb0297-98

    CAS  Google Scholar 

  38. Demidov VV, Protozanova E, Izvolsky KI, Price C, Nielsen PE, Frank-Kamenetskii MD (2002) Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids. Proc Natl Acad Sci U S A 99(9):5953–5958. doi:10.1073/pnas.092127999

    CAS  Google Scholar 

  39. Demidov V, Frankkamenetskii MD, Egholm M, Buchardt O, Nielsen PE (1993) Sequence selective double-strand DNA cleavage by peptide nucleic-acid (PNA) targeting using nuclease s1. Nucleic Acids Res 21(9):2103–2107. doi:10.1093/nar/21.9.2103

    CAS  Google Scholar 

  40. Nielsen PE (1999) Applications of peptide nucleic acids. Curr Opin Biotechnol 10(1):71–75

    CAS  Google Scholar 

  41. Briones C, Mateo-Marti E, Gomez-Navarro C, Parro V, Roman E, Martin-Gago JA (2004) Ordered self-assembled monolayers of peptide nucleic acids with DNA recognition capability. Phys Rev Lett 93(20). doi:10.1103/PhysRevLett.93.208103

  42. Briones C, Mateo-Marti E, Gomez-Navarro C, Parro V, Roman E, Martin-Gago JA (2005) Structural and functional characterization of self-assembled monolayers of peptide nucleic acids and its interaction with complementary DNA. J Mol Catal -Chem 228(1–2):131–136. doi:10.1016/j.molcata.2004.09.076

    CAS  Google Scholar 

  43. Mateo-Martí E, Briones C, Román E, Briand E, Pradier CM, Martín-Gago JA (2005) Self-assembled monolayers of peptide nucleic acids on gold surfaces: a spectroscopic study. Langmuir 21(21):9510–9517. doi:10.1021/la050366v

    Google Scholar 

  44. Briones C, Martin-Gago JA (2006) Nucleic acids and their analogs as nanomaterials for biosensor development. Curr Nanosci 2(3):257–273

    CAS  Google Scholar 

  45. Rogero C, Chaffey BT, Mateo-Marti E, Sobrado JM, Horrocks BR, Houlton A, Lakey JH, Briones C, Martin-Gago JA (2008) Silicon surface nanostructuring for covalent immobilization of biomolecules. J Phys Chem C 112(25):9308–9314. doi:10.1021/jp801543p

    CAS  Google Scholar 

  46. Singh RP, Oh BK, Choi JW (2010) Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry 79(2):153–161. doi:10.1016/j.bioelechem.2010.02.004

    CAS  Google Scholar 

  47. Wang J, Palecek E, Nielsen PE, Rivas G, Cai X, Shiraishi H, Dontha N, Luo D, Farias PAM (1996) Peptide nucleic acid probes for sequence-specific DNA biosensors. J Am Chem Soc 118(33):7667–7670. doi:10.1021/ja9608050

    CAS  Google Scholar 

  48. Wang J, Rivas G, Cai X, Chicharro M, Parrado C, Dontha N, Begleiter A, Mowat M, Palecek E, Nielsen PE (1997) Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor. Anal Chim Acta 344(1–2):111–118

    CAS  Google Scholar 

  49. Raoof JB, Ojani R, Golabi SM, Hamidi-Asl E, Hejazi MS (2011) Preparation of an electrochemical PNA biosensor for detection of target DNA sequence and single nucleotide mutation on p53 tumor suppressor gene corresponding oligonucleotide. Sens Actuators B-Chem 157(1):195–201. doi:10.1016/j.snb.2011.03.049

    CAS  Google Scholar 

  50. Hejazi MS, Pournaghi-Azar MH, Ahour F (2010) Electrochemical detection of short sequences of hepatitis C 3a virus using a peptide nucleic acid-assembled gold electrode. Anal Biochem 399(1):118–124

    CAS  Google Scholar 

  51. Pournaghi-Azar M, Ahour F, Hejazi M (2010) Direct detection and discrimination of double-stranded oligonucleotide corresponding to hepatitis C virus genotype 3a using an electrochemical DNA biosensor based on peptide nucleic acid and double-stranded DNA hybridization. Anal Bioanal Chem 397(8):3581–3587. doi:10.1007/s00216-010-3875-5

    CAS  Google Scholar 

  52. Hejazi MS, Pournaghi-Azar MH, Alipour E, Abdolahinia ED, Arami S, Navvah H (2011) Development of a novel electrochemical biosensor for detection and discrimination of dna sequence and single base mutation in dsDNA samples based on PNA-dsDNA hybridization - a new platform technology. Electroanalysis 23(2):503–511. doi:10.1002/elan.201000413

    CAS  Google Scholar 

  53. Luo XT, Hsing IM (2009) Immobilization-free multiplex electrochemical DNA and SNP detection. Biosens Bioelectron 25(4):803–808. doi:10.1016/j.bios.2009.08.034

    CAS  Google Scholar 

  54. Luo X, Hsing IM (2009) Real time electrochemical monitoring of DNA/PNA dissociation by melting curve analysis. Electroanalysis 21(14):1557–1561. doi:10.1002/elan.200904592

    CAS  Google Scholar 

  55. Husken N, Gebala M, Schuhmann W, Metzler-Nolte N (2010) A single-electrode, dual-potential ferrocene-PNA biosensor for the detection of DNA. ChemBioChem 11(12):1754–1761. doi:10.1002/cbic.200900748

    Google Scholar 

  56. Kerman K, Vestergaard M, Nagatani N, Takamura Y, Tamiya E (2006) Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: electrostatic interactions with a metal cation. Anal Chem 78(7):2182–2189. doi:10.1021/ac051526a

    CAS  Google Scholar 

  57. Fang ZC, Kelley SO (2009) Direct electrocatalytic mRNA detection using PNA-nanowire sensors. Anal Chem 81(2):612–617. doi:10.1021/ac801890f

    CAS  Google Scholar 

  58. Wu W, Zhang G-J (2011) Silicon nanowire biosensor for ultrasensitive and label-free direct detection of miRNAs. In: MicroRNA and cancer, vol 676. Methods in molecular biology. Humana Press, pp 111-121. doi:10.1007/978-1-60761-863-8_9

  59. Gao Z, Peng Y (2011) A highly sensitive and specific biosensor for ligation- and PCR-free detection of MicroRNAs. Biosens Bioelectron 26(9):3768–3773

    CAS  Google Scholar 

  60. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Meth 1(2):155–161

    CAS  Google Scholar 

  61. Le Floch F, Ho HA, Leclerc M (2006) Label-free electrochemical detection of protein based on a ferrocene-bearing cationic polythiophene and aptamer. Anal Chem 78(13):4727–4731. doi:10.1021/ac0521955

    Google Scholar 

  62. Kong J, Ferhan AR, Chen X, Zhang L, Balasubramanian N (2008) Polysaccharide templated silver nanowire for ultrasensitive electrical detection of nucleic acids. Anal Chem 80(19):7213–7217. doi:10.1021/ac800334y

    CAS  Google Scholar 

  63. Kong JM, Zhang H, Chen XT, Balasubramanian N, Kwong DL (2008) Ultrasensitive electrical detection of nucleic acids by haematin catalysed silver nanoparticle formation in sub-microgapped biosensors. Biosens Bioelectron 24(4):787–791. doi:10.1016/j.bios.2008.06.047

    CAS  Google Scholar 

  64. Fang C, Fan Y, Kong J, Gao Z, Balasubramanian N (2008) Electrical detection of oligonucleotide using an aggregate of gold nanoparticles as a conductive tag. Anal Chem 80(24):9387–9394. doi:10.1021/ac801433z

    CAS  Google Scholar 

  65. Ferreira GNM, da-Silva A-C, Tomé B (2009) Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance. Trends Biotechnol 27(12):689–697. doi:10.1016/j.tibtech.2009.09.003

    CAS  Google Scholar 

  66. Wittung-Stafshede P, Rodahl M, Kasemo B, Nielsen P, Norden B (2000) Detection of point mutations in DNA by PNA-based quartz-crystal biosensor. Colloids Surf -Physicochem Eng Aspects 174(1–2):269–273. doi:10.1016/s0927-7757(00)00537-9

    CAS  Google Scholar 

  67. Yao C, Zhu T, Tang J, Wu R, Chen Q, Chen M, Zhang B, Huang J, Fu W (2008) Hybridization assay of hepatitis B virus by QCM peptide nucleic acid biosensor. Biosens Bioelectron 23(6):879–885

    CAS  Google Scholar 

  68. Lao AIK, Su X, Aung KMM (2009) SPR study of DNA hybridization with DNA and PNA probes under stringent conditions. Biosens Bioelectron 24(6):1717–1722. doi:10.1016/j.bios.2008.08.054

    CAS  Google Scholar 

  69. Carrascosa LG, Calle A, Lechuga LM (2009) Label-free detection of DNA mutations by SPR: application to the early detection of inherited breast cancer. Anal Bioanal Chem 393(4):1173–1182. doi:10.1007/s00216-008-2555-1

    CAS  Google Scholar 

  70. Sepulveda B, Carrascosa LG, Regatos D, Otte MA, Farina D, Lechuga LM (2009) Surface plasmon resonance biosensors for highly sensitive detection in real samples. In: Razeghi MMH (ed) Biosensing Ii, vol 7397. Proceedings of SPIE. doi:10.1117/12.827062

  71. Sawata S, Kai E, Ikebukuro K, Iida T, Honda T, Karube I (1999) Application of peptide nucleic acid to the direct detection of deoxyribonucleic acid amplified by polymerase chain reaction. Biosens Bioelectron 14(4):397–404. doi:10.1016/s0956-5663(99)00018-4

    CAS  Google Scholar 

  72. Prabhakar N, Arora K, Arya SK, Solanki PR, Iwamoto M, Singh H, Malhotra BD (2008) Nucleic acid sensor for M-tuberculosis detection based on surface plasmon resonance. Analyst 133(11):1587–1592. doi:10.1039/b808225a

    CAS  Google Scholar 

  73. Ananthanawat C, Vilaivan T, Mekboonsonglarp W, Hoven VP (2009) Thiolated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance. Biosens Bioelectron 24(12):3544–3549. doi:10.1016/j.bios.2009.05.011

    CAS  Google Scholar 

  74. Ananthanawat C, Vilaivan T, Hoven VP, Su X (2010) Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique. Biosens Bioelectron 25(5):1064–1069. doi:10.1016/j.bios.2009.09.028

    CAS  Google Scholar 

  75. Ananthanawat C, Hoven VP, Vilaivan T, Su X (2011) Surface plasmon resonance study of PNA interactions with double-stranded DNA. Biosens Bioelectron 26(5):1918–1923. doi:10.1016/j.bios.2010.05.027

    CAS  Google Scholar 

  76. Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E (2005) Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 77(21):6976–6984. doi:10.1021/ac0513459

    CAS  Google Scholar 

  77. Joung H-A, Lee N-R, Lee SK, Ahn J, Shin YB, Choi H-S, Lee C-S, Kim S, Kim M-G (2008) High sensitivity detection of 16 s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Anal Chim Acta 630(2):168–173

    CAS  Google Scholar 

  78. Su X, Teh HF, Aung KMM, Zong Y, Gao Z (2008) Femtomol SPR detection of DNA-PNA hybridization with the assistance of DNA-guided polyaniline deposition. Biosens Bioelectron 23(11):1715–1720

    CAS  Google Scholar 

  79. D'Agata R, Corradini R, Grasso G, Marchelli R, Spoto G (2008) Ultrasensitive detection of DNA by PNA and nanoparticle-enhanced surface plasmon resonance imaging. ChemBioChem 9(13):2067–2070. doi:10.1002/cbic.200800310

    Google Scholar 

  80. Pita M, Abad JM, Vaz-Dominguez C, Briones C, Mateo-Marti E, Martin-Gago JA, Morales MDP, Fernandez VM (2008) Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J Colloid Interface Sci 321(2):484–492. doi:10.1016/j.jcis.2008.02.010

    CAS  Google Scholar 

  81. Southern EM (2001) DNA Microarrays. In, vol 170. pp 1-15

  82. Stoughton RB (2005) Applications of DNA microarrays in biology. In: Annual review of biochemistry, vol 74. Annual review of biochemistry. pp 53-82. doi:10.1146/annurev.biochem.74.082803.133212

  83. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270(5235):467–470. doi:10.1126/science.270.5235.467

    CAS  Google Scholar 

  84. Dufva M (2009) Introduction to microarray technology DNA microarrays for biomedical research. In: Dufva M (ed), vol 529. Methods in molecular biology. Humana Press, pp 1-22. doi:10.1007/978-1-59745-538-1_1

  85. Brandt O, Hoheisel JD (2004) Peptide nucleic acids on microarrays and other biosensors. Trends Biotechnol 22(12):617–622. doi:10.1016/j.tibtech.2004.10.003

    CAS  Google Scholar 

  86. Liu B, Bazan GC (2005) Methods for strand-specific DNA detection with cationic conjugated polymers suitable for incorporation into DNA chips and microarrays. Proc Natl Acad Sci U S A 102(3):589–593. doi:10.1073/pnas.0408561102

    CAS  Google Scholar 

  87. Weiler J, Gausepohl H, Hauser N, Jensen ON, Hoheisel JD (1997) Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nucleic Acids Res 25(14):2792–2799. doi:10.1093/nar/25.14.2792

    CAS  Google Scholar 

  88. Matysiak S, Reuthner F, Hoheisel JD (2001) Automating parallel peptide synthesis for the production of PNA library arrays. Biotechniques 31(4):896, 898, 900–2, 904. http://www.ncbi.nlm.nih.gov/pubmed/11680721

    Google Scholar 

  89. Jacob A, Brandt O, Stephan A, Hoheisel JD (2004) Peptide nucleic acid microarrays bioconjugation protocols. In: Niemeyer CM (ed), vol 283. Methods in molecular biology. Humana Press, pp 283-293. doi:10.1385/1-59259-813-7:283

  90. Brandt O, Feldner J, Stephan A, Schröder M, Schnölzer M, Arlinghaus HF, JrD H, Jacob A (2003) PNA microarrays for hybridisation of unlabelled DNA samples. Nucleic Acids Res 31(19):e119. doi:10.1093/nar/gng120

    Google Scholar 

  91. Song HJ, Lee JW, Kim BG, Song SY, Bae DS, Kim DS (2010) Comparison of the performance of the PANArray (TM) HPV test and DNA chip test for genotyping of human papillomavirus in cervical swabs. Biochip J 4(3):167–172. doi:10.1007/s13206-010-4301-y

    CAS  Google Scholar 

  92. J-j C, Kim C, Park H (2009) Peptide nucleic acid-based array for detecting and genotyping human papillomaviruses. J Clin Microbiol 47(6):1785–1790. doi:10.1128/jcm.01398-08

    Google Scholar 

  93. Jang H, Kim J, Choi J-J, Son Y, Park H (2010) Peptide nucleic acid array for detection of point mutations in Hepatitis B virus associated with antiviral resistance. J Clin Microbiol 48(9):3127–3131. doi:10.1128/jcm.02058-09

    CAS  Google Scholar 

  94. Calabretta A, Wasserberg D, Posthuma-Trumpie GA, Subramaniam V, van Amerongen A, Corradini R, Tedeschi T, Sforza S, Reinhoudt DN, Marchelli R, Huskens J, Jonkheijm P (2011) Patterning of peptide nucleic acids using reactive microcontact printing. Langmuir 27(4):1536–1542. doi:10.1021/la102756k

    CAS  Google Scholar 

  95. Cretich M, Chiari M, Debaene F, Winssinger N (2009) Self-assembly of PNA-encoded peptides into microarrays. In: Peptide microarrays, vol 570. Methods in molecular biology. Humana Press, pp 299-307. doi:10.1007/978-1-60327-394-7_15

  96. Ragoussis J, Elvidge GP, Kaur K, Colella S (2006) Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research. Plos Genet 2(7):920–929. doi:10.1371/journal.pgen.0020100

    CAS  Google Scholar 

  97. Ross PL, Lee K, Belgrader P (1997) Discrimination of single-nucleotide polymorphisms in human DNA using peptide nucleic acid probes detected by MALDI-TOF mass spectrometry. Anal Chem 69(20):4197–4202. doi:10.1021/ac9703966

    CAS  Google Scholar 

  98. Schatz P, Distler J, Berlin K, Schuster M (2006) Novel method for high throughput DNA methylation marker evaluation using PNA-probe library hybridization and MALDI-TOF detection. Nucleic Acids Res 34(8). doi:10.1093/nar/gkl218

  99. Arlinghaus HF, Schroder M, Feldner JC, Brandt O, Hoheisel JD, Lipinsky D (2004) Development of PNA microarrays for gene diagnostics with TOF-SIMS. Appl Surf Sci 231:392–396. doi:10.1016/j.apsusc.2004.03.145

    Google Scholar 

  100. Winssinger N, Harris JL (2005) Microarray-based functional protein profiling using peptide nucleic acid-encoded libraries. Expert Rev Proteomics 2(6):937–947. doi:10.1586/14789450.2.6.937

    CAS  Google Scholar 

  101. Oura K, Lifshits VG, Saranin AA, Zotov AV, Katayama M, Yates JT (2004) Surface science: an introduction, vol 57. vol 10. AIP

  102. Poling GW (1970) Infrared reflection studies of metal surfaces. J Colloid Interface Sci 34(3):365. doi:10.1016/0021-9797(70)90195-5

    CAS  Google Scholar 

  103. Mateo-Marti E, Briones C, Pradier CM, Martin-Gago JA (2007) A DNA biosensor based on peptide nucleic acids on gold surfaces. Biosens Bioelectron 22(9–10):1926–1932. doi:10.1016/j.bios.2006.08.012

    CAS  Google Scholar 

  104. Mertens J, Rogero C, Calleja M, Ramos D, Martin-Gago JA, Briones C, Tamayo J (2008) Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol 3(5):301–307. doi:10.1038/nnano.2008.91

    CAS  Google Scholar 

  105. Obika S, Nanbu D, Hari Y, Morio K-i, In Y, Ishida T, Imanishi T (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, -endo sugar puckering. Tetrahedron Lett 38(50):8735–8738

    CAS  Google Scholar 

  106. Koshkin AA, Rajwanshi VK, Wengel J (1998) Novel convenient syntheses of LNA [2.2.1]bicyclo nucleosides. Tetrahedron Lett 39(24):4381–4384

    CAS  Google Scholar 

  107. Natsume T, Ishikawa Y, Dedachi K, Tsukamoto T, Kurita N (2007) Effect of base mismatch on the electronic properties of DNA-DNA and LNA-DNA double strands: density-functional theoretical calculations. Chem Phys Lett 446(1–3):151–158

    CAS  Google Scholar 

  108. Størling ZM, Koch T, Begley TP (2007) Locked nucleic acids. In: Wiley encyclopedia of chemical biology. John Wiley & Sons, Inc. doi:10.1002/9780470048672.wecb516

  109. Vester B, Wengel J (2004) LNA (Locked Nucleic Acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43(42):13233–13241. doi:10.1021/bi0485732

    CAS  Google Scholar 

  110. Fang S, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of MicroRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128(43):14044–14046. doi:10.1021/ja065223p

    CAS  Google Scholar 

  111. Diercks S, Gescher C, Metfies K, Medlin LK (2009) Evaluation of locked nucleic acids for signal enhancement of oligonucleotide probes for microalgae immobilised on solid surfaces. J Appl Phycol 21(6):657–668. doi:10.1007/s10811-008-9399-0

    CAS  Google Scholar 

  112. Orum H, Jakobsen MH, Koch T, Vuust J, Borre MB (1999) Detection of the factor V Leiden mutation by direct allele-specific hybridization of PCR amplicons to photoimmobilized locked nucleic acids. Clin Chem 45(11):1898–1905

    CAS  Google Scholar 

  113. Simeonov A, Nikiforov TT (2002) Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection. Nucleic Acids Res 30(17):e91. doi:10.1093/nar/gnf090

    Google Scholar 

  114. Wang L, Yang CJ, Medley CD, Benner SA, Tan W (2005) Locked nucleic acid molecular beacons. J Am Chem Soc 127(45):15664–15665. doi:10.1021/ja052498g

    CAS  Google Scholar 

  115. Martinez K, Estevez MC, Wu YR, Phillips JA, Medley CD, Tan WH (2009) Locked nucleic acid based beacons for surface interaction studies and biosensor development. Anal Chem 81(9):3448–3454. doi:10.1021/ac8027239

    CAS  Google Scholar 

  116. Han WH, Liao JM, Chen KL, Wu SM, Chiang YW, Lo ST, Chen CL, Chiang CM (2010) Enhanced recognition of single-base mismatch using locked nucleic acid-integrated hairpin DNA probes revealed by atomic force microscopy nanolithography. Anal Chem 82(6):2395–2400. doi:10.1021/ac902665c

    CAS  Google Scholar 

  117. Chen J, Zhang J, Wang K, Lin X, Huang L, Chen G (2008) Electrochemical biosensor for detection of BCR/ABL fusion gene using locked nucleic acids on 4-aminobenzenesulfonic acid-modified glassy carbon electrode. Anal Chem 80(21):8028–8034. doi:10.1021/ac801040e

    CAS  Google Scholar 

  118. Lin LQ, Lin XH, Chen JH, Chen W, He M, Chen YZ (2009) Electrochemical biosensor for detection of BCR/ABL fusion gene based on hairpin locked nucleic acids probe. Electrochem Commun 11(8):1650–1653. doi:10.1016/j.elecom.2009.06.015

    CAS  Google Scholar 

  119. Wang K, Sun ZL, Feng MJ, Liu AL, Yang SY, Chen YZ, Lin XH (2011) Design of a sandwich-mode amperometric biosensor for detection of PML/RAR alpha fusion gene using locked nucleic acids on gold electrode. Biosens Bioelectron 26(6):2870–2876. doi:10.1016/j.bios.2010.11.030

    CAS  Google Scholar 

  120. Lin L, Liu Q, Wang L, Liu A, Weng S, Lei Y, Chen W, Lin X, Chen Y (2011) Enzyme-amplified electrochemical biosensor for detection of PML-RAR alpha fusion gene based on hairpin LNA probe. Biosens Bioelectron 28(1):277–283. doi:10.1016/j.bios.2011.07.032

    CAS  Google Scholar 

  121. Berti F, Eisenkolbl C, Minocci D, Nieri P, Rossi AM, Mascini M, Marrazza G (2011) Cannabinoid receptor gene detection by electrochemical genosensor. J Electroanal Chem 656(1–2):55–60. doi:10.1016/j.jelechem.2011.01.021

    CAS  Google Scholar 

  122. Laschi S, Palchetti I, Marrazza G, Mascini M (2009) Enzyme-amplified electrochemical hybridization assay based on PNA, LNA and DNA probe-modified micro-magnetic beads. Bioelectrochemistry 76(1–2):214–220

    CAS  Google Scholar 

  123. Darfeuille F, Hansen JB, Orum H, Primo CD, Toulme JJ (2004) LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1. Nucleic Acids Res 32(10):3101–3107. doi:10.1093/nar/gkh636

    CAS  Google Scholar 

  124. Virno A, Randazzo A, Giancola C, Bucci M, Cirino G, Mayol L (2007) A novel thrombin binding aptamer containing a G-LNA residue. Bioorg Med Chem 15(17):5710–5718. doi:10.1016/j.bmc.2007.06.008

    CAS  Google Scholar 

  125. Hernandez FJ, Kalra N, Wengel J, Vester B (2009) Aptamers as a model for functional evaluation of LNA and 2′-amino LNA. Bioorganic Med Chem Lett 19(23):6585–6587. doi:10.1016/j.bmcl.2009.10.039

    CAS  Google Scholar 

  126. McTigue PM, Peterson RJ, Kahn JD (2004) Sequence-dependent thermodynamic parameters; for locked nucleic acid (LNA)-DNA duplex formation. Biochemistry 43(18):5388–5405. doi:10.1021/bi035976d

    CAS  Google Scholar 

  127. Kaur H, Arora A, Wengel J, Maiti S (2006) Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry 45(23):7347–7355. doi:10.1021/bi060307w

    CAS  Google Scholar 

  128. Singh SK, Nielsen P, Koshkin AA, Wengel J (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun 4:455–456. doi:10.1039/a708608c

    Google Scholar 

  129. Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83(11):3746–3750

    CAS  Google Scholar 

  130. SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95(4):1460–1465

    CAS  Google Scholar 

  131. Sugimoto N, S-i N, Yoneyama M, K-i H (1996) Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res 24(22):4501–4505. doi:10.1093/nar/24.22.4501

    CAS  Google Scholar 

  132. Kim D-K, Kwon Y-S, Takamura Y, Tamiya E (2006) Detection of DNA Hybridization Properties Using Thermodynamic Method. Japanese Journal of Applied Physics 45 (Copyright (C) 2006 The Japan Society of Applied Physics):509

Download references

Acknowledgements

This work was supported by MICINN (grants EUI2008-00158 and BIO2010-20696) and CSIC (grant 200920I040). CIBERehd is funded by the Instituto de Salud Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Briones.

Additional information

Published in the topical collection Biomimetic Recognition Elements for Sensing Applications with guest editor María Cruz Moreno-Bondi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briones, C., Moreno, M. Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development. Anal Bioanal Chem 402, 3071–3089 (2012). https://doi.org/10.1007/s00216-012-5742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5742-z

Keywords

Navigation