Skip to main content
Log in

Solution-state NMR spectroscopy of famotidine revisited: spectral assignment, protonation sites, and their structural consequences

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Multinuclear one (1D-) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopic investigations of famotidine, the most potent and widely used histamine H2-receptor antagonist, were carried out in dimethyl sulfoxide-d6 (DMSO-d6) and water. Previous NMR assignments were either incomplete or full assignment was based only on 1D spectra and quantum-chemical calculations. Our work revealed several literature misassignments of the 1H, 13C, and 15N NMR signals and clarified the acid–base properties of the compound at the site-specific level. The erroneous assignment of Baranska et al. (J. Mol. Struct. 2001, 563) probably originates from an incorrect hypothesis about the major conformation of famotidine in DMSO-d6. A folded conformation similar to that observed in the solid-state was also assumed in solution, stabilized by an intramolecular hydrogen bond involving one of the sulphonamide NH2 protons and the thiazole nitrogen. Our detailed 1D and 2D NMR experiments enabled complete ab initio 1H, 13C, and 15N assignments and disproved the existence of the sulphonamide NH hydrogen bond in the major conformer. Rather, the molecule is predominantly present in an extended conformation in DMSO-d6. The aqueous acid–base properties of famotidine were studied by 1D 1H- and 2D 1H/13C heteronuclear multiple-bond correlation (HMBC) NMR-pH titrations. The experiments identified its basic centers including a new protonation step at highly acidic conditions, which was also confirmed by titrations and quantum-chemical calculations on a model compound, 2-[4-(sulfanylmethyl)-1,3-thiazol-2-yl]guanidine. Famotidine is now proved to have four protonation steps in the following basicity order: the sulfonamidate anion protonates at pH = 11.3, followed by the protonation of the guanidine group at pH = 6.8, whereas, in strong acidic solutions, two overlapping protonation processes occur involving the amidine and thiazole moieties.

Correct amidine assignments and protonation sites of famotidine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. pH* refers to the value measured in deuterium oxide by a glass electrode calibrated with aqueous buffer solutions. According to Gross-Butler-Purlee theory [29], the pD value can be calculated from pH* values by addition of a factor of 0.44.

References

  1. Yanagisawa I, Hirata Y, Ishii Y (1987) Studies on histamine H2 receptor antagonists 2. synthesis and pharmacological activities of N-sulfonyl amidine derivatives. J Med Chem 30:1787–1793

    Article  CAS  Google Scholar 

  2. Hara T (2003) Innovation in the pharmaceutical industry: the process of drug discovery and development. Edward Elgar Publishing, Cheltenham

    Google Scholar 

  3. National pharmaceutical sales data published by the National Health Insurance Fund of Hungary. http://www.oep.hu/portal/page?_pageid=35,21341107&_dad=portal&_schema=PORTAL. Accessed 05 Sept 2011

  4. Hirata Y, Yanagisawa I, Ishii Y, Tsukamoto Sh, Ito N, Isomura Y, Takeda M (1980) Composés du guanidinothiazole utiles comme inhibiteurs des secrétions d’acide gastrique, leurs procédés de préparation et les compositions médicales contenant de tels composés. Yamanouchi Pharmaceutical Co. Belgian Patent BE882071-A1 (submitted: 1979).

  5. Ferenczy GG, Párkányi L, Ángyán JG, Kálmán A, Hegedűs B (2000) Crystal and electronic structure of two modifications of famotidine. An experimental and theoretical study. J Mol Struct (THEOCHEM) 503:73–79

    Article  CAS  Google Scholar 

  6. Baranska M, Czarniecki K, Proniewicz LM (2001) Experimental and calculated 1H, 13C, 15N NMR spectra of famotidine. J Mol Struct 563–564:347–351

    Article  Google Scholar 

  7. Baranska M, Gumienna-Kontecka E, Kozlowski H, Proniewicz LM (2002) A study on the nickel(II)-famotidine complexes. J Inorg Biochem 92:112–120

    Article  CAS  Google Scholar 

  8. Baranska M, Lasocha W, Kozlowski H, Proniewicz LM (2004) New solid state Ni(II)-famotidine square-planar complex: powder diffraction and spectroscopic studies. J Inorg Biochem 98:995–1001

    Article  CAS  Google Scholar 

  9. Al-Omar MA, Al-Mohizea AM (2009) Chapter 3 famotidine. In: Brittain HG (ed): Profiles of drug substances, excipients and related methodology, vol. 34. Burlington, Academic. pp. 115–151

  10. Hirata Y, Yanagisawa I, Ishii Y, Tsukamoto Sh, Ito N, Isomura Y, Takeda M (1981) Guanidinthiazole compounds, process for preparation and gastric inhibiting compositions containing them. Yamanouchi Pharmaceutical Co. United States Patent US4283408 (submitted: 1979).

  11. Mady FM, Abou-Taleb AE, Khaled KA, Yamasaki K, Iohara D, Ishiguro T, Hirayama F, Uekama K, Otagiri M (2010) Enhancement of the aqueous solubility and masking the bitter taste of famotidine using drug/SBE-b-CyD/povidone K30 complexation approach. J Pharm Sci 99:4285–4294

    Article  CAS  Google Scholar 

  12. Mady FM, Abou-Taleb AE, Khaled KA, Yamasaki K, Iohara D, Taguchi K, Anrakue M, Hirayama F, Uekama K, Otagiri M (2010) Evaluation of carboxymethyl-β-cyclodextrin with acid function: improvement of chemical stability, oral bioavailability and bitter taste of famotidine. Int J Pharm 397:1–8

    Article  CAS  Google Scholar 

  13. Miodragovic DU, Bogdanovic GA, Miodragovic ZM, Radulovic M-D, Novakovic SB, Kaluderovic GN, Kozlowski H (2006) Interesting coordination abilities of antiulcer drug famotidine and antimicrobial activity of drug and its cobalt(III) complex. J Inorg Biochem 100:1568–1574

    Article  CAS  Google Scholar 

  14. Ishida T, In Y, Shibata M, Doi M, Inoue M, Yanagisawa I (1987) On the structure-activity relationship of histamine H2-receptor antagonists based on the X-ray crystal structures and 1H-NMR spectra of amidine derivatives. Mol Pharmacol 31:410–416

    CAS  Google Scholar 

  15. Olea-Azar C, Parra-Mouchet J (1997) Conformational studies on 2-guanidinylthiazole, famotidine and some analogues. J Mol Struct (THEOCHEM) 390:239–245

    Article  CAS  Google Scholar 

  16. Noszál B (1990) Acid–base properties of bioligands. In: Burger K (ed) Biocoordination chemistry: coordination equilibria in biologically active systems. Ellis Horwood, Chichester, pp 18–55

    Google Scholar 

  17. Marosi A, Kovács Z, Béni S, Kökösi J, Noszál B (2009) Triprotic acid–base microequilibria and pharmacokinetic sequelae of cetirizine. Eur J Pharm Sci 37:321–328

    Article  CAS  Google Scholar 

  18. Takács-Novák K, Noszál B, Hermecz I, Keresztúri G, Podányi B, Szász G (1990) Protonation equilibria of quinolone antibacterials. J Pharm Sci 79:1023–1028

    Article  Google Scholar 

  19. Sturgeon RJ, Schulman SG (1977) Electronic absorption spectra and protolytic equilibria of doxorubicin: direct spectrophotometric determination of microconstants. J Pharm Sci 66:958–961

    Article  CAS  Google Scholar 

  20. Elson EL, Edsall JT (1962) Raman spectra and sulfhydryl ionization constants of thioglycolic acid and cysteine. Biochemistry 1:1–7

    Article  CAS  Google Scholar 

  21. Szakács Z, Béni S, Varga Z, Őrfi L, Kéri G, Noszál B (2005) Acid–base profiling of imatinib (Gleevec) and its fragments. J Med Chem 48:249–255

    Article  Google Scholar 

  22. Szakács Z, Kraszni M, Noszál B (2004) Determination of microscopic acid–base parameters from NMR-pH titrations. Anal Bional Chem 378:1428–1448

    Article  Google Scholar 

  23. Islam MS, Narurkar MM (1993) Solubility, stability and ionization behaviour of famotidine. J Pharm Pharmacol 45:682–686

    Article  CAS  Google Scholar 

  24. Crisponi G, Cristiani F, Nurchi VM, Silvagni R, Ganadu ML, Lubinu G, Naldini L, Panzanelli A (1995) A potentiometric, spectrophotometric and 1H NMR study on the interaction of cimetidine, famotidine and ranitidine with platinum (II) and palladium (II) metal ions. Polyhedron 14:1517–1530

    Article  CAS  Google Scholar 

  25. Duda AM, Kowalik-Jankowska T, Kozlowski H, Kupka T (1995) Histamine H2 antagonists: powerful ligands for copper(II). Reinterpretation of the famotidine–copper(II) system. J Chem Soc Dalton Trans 2909–2913

  26. Button RG, Cairns JP, Taylor PJ (1985) Tautomeric ratio in 4-methylthiazol-2-ylguanidine, a model guanidinoheterocycle. J Chem Soc Perkin Trans 2:1555–1558

    Google Scholar 

  27. Junnarkar GH, Stavchansky S (1995) Isothermal and nonisothermal decomposition of famotidine in aqueous solution. Pharm Res 12:599–604

    Article  CAS  Google Scholar 

  28. Singh S, Kumar S, Sharda N, Chakraborti AK (2002) New findings on degradation of famotidine under basic conditions: identification of a hitherto unknown degradation product and the condition for obtaining the propionamide intermediate in pure forma. J Pharm Sci 91:253–257

    Article  CAS  Google Scholar 

  29. Purlee EL (1959) On the solvent isotope effect of deuterium in aqueous acid solutions. J Am Chem Soc 81:263–269

    Article  CAS  Google Scholar 

  30. Szakács Z, Hägele G (2004) Accurate determination of low pK values by 1H NMR titration. Talanta 62:819–825

    Article  Google Scholar 

  31. Steffel LR, Cashman TJ, Reutershan MH, Linton BR (2007) Deuterium exchange as an indicator of hydrogen bond donors and acceptors. J Am Chem Soc 129:12956–12957

    Article  CAS  Google Scholar 

  32. Ishida T, In M, Doi M, Inoue M, Yangisawa I (1989) Structural study of histamine H2-receptor antagonists. Five 3-[2-(diaminomethyleneamino)-4-thiazolylmethylthio]propionamidine and -amide derivatives. Acta Crystallogr B 45:505–512

    Article  Google Scholar 

  33. Dewick PM (2006) Essentials of organic chemistry: for students of pharmacy, medicinal chemistry and biological chemistry. John Wiley & Sons, Chichester, UK

  34. Wood JL (1974) pH-Controlled hydrogen-bonding. Biochem J 143:775–777

    CAS  Google Scholar 

  35. Metzger JV (1979) Thiazole and its derivatives. John Wiley & Sons, Chichester, UK

  36. Fabbrizzi L, Micheloni M, Paoletti P, Schwarzenbach G (1977) Protonation processes of unusual exothermicity. J Am Chem Soc 99:5574–5576

    Article  CAS  Google Scholar 

  37. Albourine A, Petit-Ramel M, Thomas-David G, Vallon J-J (1989) Complexes binaires et ternaires du cuivre (II) avec la 1-canavanine et la 1-arginine examinés par potentiométrie, spectrophotométrie visible et dichroïsme circulaire. Can J Chem 67:959–966

    Article  CAS  Google Scholar 

  38. Schweizer MP, Broom AD, Ts’o POP, Hollis DP (1968) Studies of inter- and intramolecular interaction in mononucleotides by proton magnetic resonance. J Am Chem Soc 90:1042–1055

    Article  CAS  Google Scholar 

  39. Naumann CF, Prijs B, Sigel H (1974) Adenosine and inosine 5′-triphosphates. Protonation, metal-ion coordination, and charge-transfer interaction between two ligands within ternary complexes. Eur J Biochem 41:209–216

    Article  CAS  Google Scholar 

  40. Scheller KH, Scheller-Krattinger V, Martin RB (1981) Equilibriums in solutions of nucleosides, 5′-nucleotides, and diethylenetriaminepalladium(2+). J Am Chem Soc 103:6833–6839

    Article  CAS  Google Scholar 

  41. Martin RB (1985) Nucleoside sites for transition metal ion binding. Acc Chem Res 18:32–38

    Article  CAS  Google Scholar 

  42. Tribolet R, Sigel H (1987) Self-association and protonation of adenosine 5′-monophosphate in comparison with its 2′- and 3′-analogues and tubercidin 5′-monophosphate (7-deaza-AMP). Eur J Biochem 163:353–363

    Article  CAS  Google Scholar 

  43. Felemez M, Marwood RD, Potter BVD, Spiess B (1999) Inframolecular studies of the protonation of adenophostin A: comparison with 1-myo-inositol 1,4,5-trisphosphate. Biochem Biophys Res Commun 266:334–340

    Article  CAS  Google Scholar 

  44. Orgován G, Noszál B (2011) Electrodeless, accurate pH determination in highly basic media using a new set of 1H NMR pH indicators. J Pharm Biomed Anal 54:958–964

    Article  Google Scholar 

  45. Quirt AR, Lyyerla JR Jr, Peat IR, Cohen JS, Reynolds WF, Freedman MH (1974) Carbon-13 nuclear magnetic resonance titration shifts in amino acids. J Am Chem Soc 96:570–574

    Article  CAS  Google Scholar 

  46. Batchelor JG, Feeney J, Roberts GCK (1975) Carbon-13 NMR protonation shifts of amines, carboxylic acids and amino acids. J Magn Reson 20:19–38

    Article  CAS  Google Scholar 

  47. Batchelor JG (1975) Theory of linear electric field shifts in carbon-13 nuclear magnetic resonance. J Am Chem Soc 97:3410–3415

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Professor Csaba Szántay Jr. (Gedeon Richter Plc.) for the fruitful discussions and suggestions. This work was supported by the National Scientific Research Fund of Hungary, OTKA K73804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ádám Demeter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.58 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marosi, A., Szalay, Z., Béni, S. et al. Solution-state NMR spectroscopy of famotidine revisited: spectral assignment, protonation sites, and their structural consequences. Anal Bioanal Chem 402, 1653–1666 (2012). https://doi.org/10.1007/s00216-011-5599-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5599-6

Keywords

Navigation