Skip to main content
Log in

From single to multiple microcoil flow probe NMR and related capillary techniques: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is one of the most important and powerful instrumental analytical techniques for structural elucidation of unknown small and large (complex) isolated and synthesized compounds in organic and inorganic chemistry. X-ray crystallography, neutron scattering (neutron diffraction), and NMR spectroscopy are the only suitable methods for three-dimensional structure determination at atomic resolution. Moreover, these methods are complementary. However, by means of NMR spectroscopy, reaction dynamics and interaction processes can also be investigated. Unfortunately, this technique is very insensitive in comparison with other spectrometric (e.g., mass spectrometry) and spectroscopic (e.g., infrared spectroscopy) methods. Mainly through the development of stronger magnets and more sensitive solenoidal microcoil flow probes, this drawback has been successfully counteracted. Capillary NMR spectroscopy increases the mass-based sensitivity of the NMR spectroscopic analysis up to 100-fold compared with conventional 5-mm NMR probes, and thus can be coupled online and off-line with other microseparation and detection techniques. It offers not only higher sensitivity, but in many cases provides better quality spectra than traditional methods. Owing to the immense number of compounds (e.g., of natural product extracts and compound libraries) to be examined, single microcoil flow probe NMR spectroscopy will soon be far from being sufficiently effective as a screening method. For this reason, an inevitable trend towards coupled microseparation–multiple microcoil flow probe NMR techniques, which allow simultaneous online and off-line detection of several compounds, will occur. In this review we describe the current status and possible future developments of single and multiple microcoil capillary flow probe NMR spectroscopy and its application as a high-throughput tool for the analysis of a large number of mass-limited samples. The advantages and drawbacks of different coupled microseparation–capillary NMR spectroscopy techniques, such as capillary high-performance liquid chromatography–NMR spectroscopy, capillary electrophoresis–NMR spectroscopy, and capillary gas chromatography–NMR spectroscopy, are discussed and demonstrated by specific applications. Another subject of discussion is the progress in parallel NMR detection techniques. Furthermore, the applicability and mixing capability of tiny reactor systems, termed “microreactors” or “micromixers,” implemented in NMR probes is demonstrated by carbamate- and imine-forming reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Ito S, Miki T, Yoshikawa M, Hamada M, Kawate Y, Hayashi S, Sato A, Kiyoshi T, Matsumoto F, Nagai H, Wada H, Fukui S, Noguchi T (2002) IEEE Trans Appl Supercond 12:1347–1350

    Article  Google Scholar 

  2. Song YQ, Goodson BM, Pines A (1999) Spectroscopy 14:26–33

    CAS  Google Scholar 

  3. Flynn PF, Mattiello DL, Hill HDW, Wand AJ (2000) J Am Chem Soc 122:4823–4824

    Article  CAS  Google Scholar 

  4. Nagai H, Sato A, Kiyoshi T, Matsumoto F, Wada H, Ito S, Miki T, Yoshikawa M, Kawate Y, Fukui S (2001) Cryogenics 41:623–630

    Article  CAS  Google Scholar 

  5. Olson DL, Lacey ME, Sweedler JV (1998) Anal Chem 70:645–650

    Article  CAS  Google Scholar 

  6. Trumbull JD, Glasgow IK, Beebe DJ, Magin RL (2000) IEEE Trans Biomed Eng 47:3–7

    Article  CAS  Google Scholar 

  7. Massin C, Vincent F, Homsy A, Ehrmann K, Boero G, Besse PA, Daridon A, Verpoorte E, de Rooij NF, Popovic RS (2003) J Magn Reson 164:242–255

    Article  CAS  Google Scholar 

  8. Wensink H, Benito-Lopez F, Hermes DC, Verboom W, Gardeniers JGE, Reinhoudt DN, van den Berg A (2005) Lab Chip 5:280–284

    Article  CAS  Google Scholar 

  9. van Bentum PJM, Janssen JWG, Kentgens APM, Bart J, Gardeniers JGE (2007) J Magn Reson 189:104–113

    Article  CAS  Google Scholar 

  10. Webb AG (2005) Magn Reson Chem 43:688–696

    Article  CAS  Google Scholar 

  11. Hoult DI, Richards RE (1976) J Magn Reson 24:71–85

    Google Scholar 

  12. Webb AG (1997) Prog Nucl Magn Reson Spectrosc 31:1–42

    Article  CAS  Google Scholar 

  13. Shoolery JN (1979) Top Carbon-13 NMR. Spectrosc 2:28–38

    Google Scholar 

  14. Olson DL, Norcross JA, O’Neil-Johnson M, Molitor PF, Detlefsen DJ, Wilson AG, Peck TL (2004) Anal Chem 76:2966–2974

    Article  CAS  Google Scholar 

  15. Kc R, Henry ID, Park GHJ, Raftery D (2009) J Magn Reson 197(2):186–192

    Article  Google Scholar 

  16. Grynbaum MD, Kreidler D, Rehbein J, Purea A, Schuler P, Schaal W, Czesla H, Webb AG, Schurig V, Albert K (2007) Anal Chem 79:2708–2713

    Article  CAS  Google Scholar 

  17. Russell DJ, Hadden CE, Martin GE, Gibson AA, Zens AP, Carolan JL (2000) J Nat Prod 63:1047–1049

    Article  CAS  Google Scholar 

  18. Spraul M, Freund AS, Nast RE, Withers RS, Maas WE, Corcoran O (2003) Anal Chem 75:1546–1551

    Google Scholar 

  19. Schroeder FC, Gronquist M (2006) Angew Chem Int Ed 45:7122–7131

    Article  CAS  Google Scholar 

  20. Albert K (ed) (2002) On-line LC-NMR and related techniques. Wiley, Chichester

    Google Scholar 

  21. Subramanian R, Kelley WP, Floyd PD, Tan ZJ, Webb AG, Sweedler JV (1999) Anal Chem 71:5335–5339

    Article  CAS  Google Scholar 

  22. Djukovic D, Liu S, Henry I, Tobias B, Raftery D (2006) Anal Chem 78(20):7154–7160

    Article  CAS  Google Scholar 

  23. Exarchou V, Krucker, van Beek MT, Vervoort, Gerothanassis JI, Albert K (2005) Magn Reson Chem 43:681–687

    Article  CAS  Google Scholar 

  24. Lambert M, Staerk D, Hansen SH, Jaroszewski JW (2005) Magn Reson Chem 43:771–775

    Article  CAS  Google Scholar 

  25. Gökay O, Kühner D, Los M, Götz F, Bertsche U, Albert K (2010) Anal Bioanal Chem 398:2039–2047

    Article  CAS  Google Scholar 

  26. Lacey ME, Subramanian R, Olson DL, Webb AG, Sweedler JV (1999) Chem Rev 99:3133–3152

    Article  CAS  Google Scholar 

  27. Jaroszewski JW (2005) Planta Med 71:795–802

    Article  CAS  Google Scholar 

  28. Sprogoe K, Staerk D, Jäger AJ, Adsersen A, Hansen SH, Witt M, Landbo AR, Meyer AS, Jaroszewski JW (2007) J Nat Prod 70:1472–1477

    Article  CAS  Google Scholar 

  29. Schmidt B, Jaroszewski JW, Bro R, Witt M, Staerk D (2008) Anal Chem 80:89–98

    Google Scholar 

  30. Sprogoe K, Staerk D, Ziegler HL, Jensen TH, Holm-Moller SB, Jaroszewski JW (2008) J Nat Prod 71:516–519

    Article  CAS  Google Scholar 

  31. Behnke B, Schlotterbeck G, Tallarek U, Strohschein S, Tseng LH, Keller T, Albert K, Bayer E (1996) Anal Chem 68:1110–1115

    Article  CAS  Google Scholar 

  32. Rehbein J, Dietrich B, Grynbaum MD, Hentschel P, Holtin K, Kuehnle M, Schuler P, Bayer M, Albert K (2007) J Sep Sci 30:2382–2390

    Article  CAS  Google Scholar 

  33. Krucker M, Lienau A, Putzbach K, Grynbaum MD, Schuler P, Albert K (2004) Anal Chem 76:2623–2628

    Article  CAS  Google Scholar 

  34. Hentschel P, Krucker M, Grynbaum MD, Putzbach K, Bischoff R, Albert K (2005) Magn Reson Chem 43:747–754

    Article  CAS  Google Scholar 

  35. DeFrancesco L (2001) Anal Chem 73:497A

    Article  CAS  Google Scholar 

  36. Wu N, Peck TL, Webb AG, Magin RL, Sweedler JV (1994) J Am Chem Soc 116:7929–7930

    Article  CAS  Google Scholar 

  37. Kautz RA, Lacey ME, Wolters AM, Foret F, Webb AG, Karger BL, Sweedler JV (2001) J Am Chem Soc 123:3159–3160

    Article  CAS  Google Scholar 

  38. Korir AK, Almeida VK, Malkin DS, Larive CK (2005) Anal Chem 77:5998–6003

    Article  CAS  Google Scholar 

  39. Almeida VK, Larive CK (2005) Magn Reson Chem 43:755–761

    Article  CAS  Google Scholar 

  40. Korir AK, Larive CK (2009) Anal Bioanal Chem 393:155–169

    Article  CAS  Google Scholar 

  41. Korir AK, Larive CK (2007) Anal Bioanal Chem 388:1707–1716

    Article  CAS  Google Scholar 

  42. Jayawickrama DA, Sweedler JV (2004) Anal Bioanal Chem 378:1528–1535

    Article  CAS  Google Scholar 

  43. Wolters AM, Jayawickrama DA, Sweedler JV (2005) J Nat Prod 68:162–167

    Article  CAS  Google Scholar 

  44. Olson DL, Lacey ME, Webb AG, Sweedler JV (1999) Anal Chem 71(15):3070–3076

    Article  CAS  Google Scholar 

  45. Pusecker K, Schewitz J, Gfrorer P, Tseng LH, Albert K, Bayer E (1998) Anal Chem 70:3280–3285

    Article  CAS  Google Scholar 

  46. Wolters AM, Jayawickrama DA, Webb AG, Sweedler JV (2002) Anal Chem 74:5550–5555

    Article  CAS  Google Scholar 

  47. Schewitz J, Pusecker K, Gfrörer P, Götz U, Tseng L-H, Albert K, Bayer E (1999) Chromatographia 50:333–337

    Article  CAS  Google Scholar 

  48. Schewitz J, Gfrörer P, Pusecker K, Tsenf LH, Albert K, Bayer E, Wilson ID, Bailey NJ, Scarfe GB, Nicholson JK, Lindon JC (1998) Analyst 123:2835–2837

    Article  CAS  Google Scholar 

  49. Horne A, Gettins P (1992) Carbohydr Res 225:43–57

    Article  CAS  Google Scholar 

  50. Everaerts FM, Beckers JL, Verheggen PFMT (1976) Isotachophoresis; theory, instrumentation and applications. Journal of Chromatography Library, vol 6. Elsevier, Amsterdam, pp 7–26

  51. Brecker L, Weber H, Griengl H, Ribbons DW (1999) Microbiology 145:3389–3397

    CAS  Google Scholar 

  52. Martin M, Labousesse J, Canioni P, Merele M (1993) Magn Reson Med 29:692–694

    Article  CAS  Google Scholar 

  53. Lacey ME, Webb AG, Sweedler JV (2000) Anal Chem 72:4991–4998

    Article  CAS  Google Scholar 

  54. Maiwald M, Fischer HH, Kim YK, Hasse H (2003) Anal Bioanal Chem 375:1111–1115

    CAS  Google Scholar 

  55. Bendel P, Bernardo M, Dunsmuir JH, Thomann H (2003) Phys Rev E 67:046307

    Article  CAS  Google Scholar 

  56. Barbarulo MV, Buiarelli F, Ciardi M, Giarrusso A, Rosati F, Cartoni GP (1995) J High Resolut Chromatogr 18:705–708

    Article  CAS  Google Scholar 

  57. De Angelis F, Di Tullio A, Mellerio G, Quaresima R, Volpe R (1999) Rapid Commun Mass Spectrom 13:895–900

    Article  Google Scholar 

  58. Pattinson SJ, Wilkins JPG (1989) Analyst 114:429–434

    Article  CAS  Google Scholar 

  59. Fischböck G, Pfannhauser W, Kellner R (1988) Mikrochim Acta 3:249–257

    Article  Google Scholar 

  60. Mosbo JA, Amenta DS, Devore TC, Gallaher TN, Zook CM (1996) J Chem Educ 73(6):572–575

    Article  Google Scholar 

  61. Kühnle M, Kreidler D, Holtin K, Czesla H, Schuler P, Schaal W, Schurig V, Albert K (2008) Anal Chem 80:5481–5486

    Article  CAS  Google Scholar 

  62. Kühnle M, Kreidler D, Holtin K, Czesla H, Schuler P, Schurig V, Albert K (2010) Chirality 22(9):808–812

    Article  CAS  Google Scholar 

  63. Kreidler D (2008) Dissertation, University of Tübingen

  64. Govil G (1973) Appl Spectrosc Rev 7:47–78

    Article  CAS  Google Scholar 

  65. Albert K (1997) J Chromatogr A 785:65–83

    Article  CAS  Google Scholar 

  66. Horvath IT, Millar JM (1991) Chem Rev 91:1339–1351

    Article  CAS  Google Scholar 

  67. Buddrus J, Herzog H (1981) Org Magn Reson 15:211–213

    Article  CAS  Google Scholar 

  68. Buddrus J, Herzog H (1983) Anal Chem 55:1611–1614

    Article  CAS  Google Scholar 

  69. Bart J, Janssen JW, van Bentum PJ, Kentgens AP, Gardeniers JG (2009) J Magn Reson 201:175–185

    Article  CAS  Google Scholar 

  70. Becerra L, Gerfen GJ, Temkin RJ, Singel DJ, Griffin RG (1993) Phys Rev Lett 71:5361–3564

    Google Scholar 

  71. Ehrmann K, Pataky K, Stettler M, Wurm FM, Brugger J, Besse P-A, Popovic R (2007) Lab Chip 7:381–383

    Article  CAS  Google Scholar 

  72. Harel E (2009) Lab Chip 9:17–23

    Article  CAS  Google Scholar 

  73. Bart J (2009) Dissertation, University of Twente

  74. Harel E (2010) Prog Nucl Magn Reson Spectrosc 57:293–305

    Article  CAS  Google Scholar 

  75. Haswell SJ, Middleton RJ, O’Sullivan B, Skelton V, Watts P, Styring P (2001) Chem Commun 391-398

  76. Koop MU, de Mello AJ, Manz A (1998) Science 280:1046–1048

    Article  Google Scholar 

  77. Figeys D, Pinto D (2001) Electrophoresis 22:208–216

    Article  CAS  Google Scholar 

  78. Liu Y, Garcia CD, Henry CS (2003) Analyst 128:1002–1008

    Article  CAS  Google Scholar 

  79. Kakuta M, Jayawickrama DA, Wolters AM, Manz A, Sweedler JV (2003) Anal Chem 75:956–960

    Article  CAS  Google Scholar 

  80. Fisher G, Petucci C, MacNamara E, Raftery D (1999) J Magn Reson 138:160–163

    Article  CAS  Google Scholar 

  81. Macnaughtan MA, Hou T, Xu J, Raftery D (2003) Anal Chem 75:5116–5123

    Article  CAS  Google Scholar 

  82. Wang H, Ciobanu L, Edison AS, Webb AG (2004) J Magn Reson 170:206–212

    Article  CAS  Google Scholar 

  83. Keifer PA, Smallcombe SH, Williams EH, Salomon KE, Mendez G, Belletire JL, Moore CDJ (2000) Comb Chem 2:151–171

    Article  CAS  Google Scholar 

  84. Ross A, Senn H (2001) Drug Discov Today 6:583–593

    Article  CAS  Google Scholar 

  85. Stockman BJ, Farley KA, Angwin DT (2001) Method Enzymol 338:230–246

    Article  CAS  Google Scholar 

  86. Spraul M, Freund AS, Nast RE, Withers RS, Maas WE, Corcoran O (2003) Anal Chem 75:1536–1551

    Article  CAS  Google Scholar 

  87. Eldridge GR, Vervoort HC, Lee CM, Cremin PA, Williams CR, Hart SM, Goering MG, O’Neil-Johnson M, Zeng L (2002) Anal Chem 74:3963–3971

    Article  CAS  Google Scholar 

  88. Peti W, Page R, Moy K, O’Neil-Johnson M, Wilson IA, Stevens RC, Wüthrich K (2005) J Struct Funct Genomics 6:259–267

    Article  CAS  Google Scholar 

  89. Li Y, Wolters AM, Malawey PV, Sweedler JV, Webb AG (1999) Anal Chem 71:4815–4820

    Article  CAS  Google Scholar 

  90. Hou T, Smith J, MacNamara E, Macnaughtan M, Raftery D (2001) Anal Chem 73:2541–2546

    Article  CAS  Google Scholar 

  91. Ross A, Schlotterbeck G, Senn H, von Kienlin M (2001) Angew Chem 40:3243–3245

    Article  CAS  Google Scholar 

  92. Bart J, De Vries AJ, Nieuwland P, Janssen JWG, van Bentum PJM, Kentgens APM, Gardeniers JGE (2008) In-flow reaction monitoring by NMR on nanoliter samples in a μ-fluidic chip

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Gökay.

Additional information

Dedicated to Prof. Klaus Albert on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gökay, O., Albert, K. From single to multiple microcoil flow probe NMR and related capillary techniques: a review. Anal Bioanal Chem 402, 647–669 (2012). https://doi.org/10.1007/s00216-011-5419-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5419-z

Keywords

Navigation