Skip to main content

Advertisement

Log in

Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we use a quantitative structure–retention relationship (QSRR) method to predict the retention times of polychlorinated biphenyls (PCBs) in comprehensive two-dimensional gas chromatography (GC×GC). We analyse the GC×GC retention data taken from the literature by comparing predictive capability of different regression methods. The various models are generated using 70 out of 209 PCB congeners in the calibration stage, while their predictive performance is evaluated on the remaining 139 compounds. The two-dimensional chromatogram is initially estimated by separately modelling retention times of PCBs in the first and in the second column (1 t R and 2 t R, respectively). In particular, multilinear regression (MLR) combined with genetic algorithm (GA) variable selection is performed to extract two small subsets of predictors for 1 t R and 2 t R from a large set of theoretical molecular descriptors provided by the popular software Dragon, which after removal of highly correlated or almost constant variables consists of 237 structure-related quantities. Based on GA-MLR analysis, a four-dimensional and a five-dimensional relationship modelling 1 t R and 2 t R, respectively, are identified. Single-response partial least square (PLS-1) regression is alternatively applied to independently model 1 t R and 2 t R without the need for preliminary GA variable selection. Further, we explore the possibility of predicting the two-dimensional chromatogram of PCBs in a single calibration procedure by using a two-response PLS (PLS-2) model or a feed-forward artificial neural network (ANN) with two output neurons. In the first case, regression is carried out on the full set of 237 descriptors, while the variables previously selected by GA-MLR are initially considered as ANN inputs and subjected to a sensitivity analysis to remove the redundant ones. Results show PLS-1 regression exhibits a noticeably better descriptive and predictive performance than the other investigated approaches. The observed values of determination coefficients for 1 t R and 2 t R in calibration (0.9999 and 0.9993, respectively) and prediction (0.9987 and 0.9793, respectively) provided by PLS-1 demonstrate that GC×GC behaviour of PCBs is properly modelled. In particular, the predicted two-dimensional GC×GC chromatogram of 139 PCBs not involved in the calibration stage closely resembles the experimental one. Based on the above lines of evidence, the proposed approach ensures accurate simulation of the whole GC×GC chromatogram of PCBs using experimental determination of only 1/3 retention data of representative congeners.

Agreement between experimental two-dimensional GCxGC chromatogram of 139 polychlorinated biphenyls and the one predicted by PLS-1 regression based on 237 molecular descriptors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gdaniec-Pietryka M, Wolska L, Namieśnik J (2007) Trends Anal Chem 26:1005–1012

    Article  CAS  Google Scholar 

  2. Sun P, Basu I, Hites RA (2006) Environ Sci Technol 40:1178–1183

    Article  CAS  Google Scholar 

  3. Riget F, Dietz R, Vorkamp K, Johansen P, Muir D (2004) Sci Total Environ 331:29–52

    Article  CAS  Google Scholar 

  4. Thomas GO, Wilkinson M, Hodson S, Jones KC (2006) Environ Pollut 141:30–41

    Article  CAS  Google Scholar 

  5. Donato F, Magoni M, Bergonzi R, Scarcella C, Indelicato A, Carasi S, Apostoli P (2006) Chemosphere 64:1562–1572

    Article  CAS  Google Scholar 

  6. Cochran JW, Frame GM (1999) J Chromatogr A 843:323–368

    Article  CAS  Google Scholar 

  7. Mydlová-Memersheimerová J, Tienpont B, David F, Krupčík J, Sandra P (2009) J Chromatogr A 1216:6043–6062

    Article  Google Scholar 

  8. Focant JF, Sjödin A, Patterson DG Jr (2004) J Chromatogr A 1040:227–238

    Article  CAS  Google Scholar 

  9. Korytár P, Leonards PEG, de Boer J, Brinkman UATH (2002) J Chromatogr A 958:203–218

    Article  Google Scholar 

  10. Harju M, Danielsson C, Haglund P (2003) J Chromatogr A 1019:111–126

    Article  CAS  Google Scholar 

  11. Dallüge J, Beens J, Brinkman UATH (2003) J Chromatogr A 1000:69–108

    Article  Google Scholar 

  12. Beens J, Tijssen R, Blomberg J (1998) J Chromatogr A 822:233–251

    Article  CAS  Google Scholar 

  13. Vendeuvre C, Bertoncini F, Thiébaut D, Martin M, Hennion MC (2005) J Sep Sci 28:1129–1136

    Article  CAS  Google Scholar 

  14. Lu X, Kong H, Li H, Ma C, Tian J, Xu G (2005) J Chromatogr A 1086:175–184

    Article  CAS  Google Scholar 

  15. Seeley JV, Seeley SK (2007) J Chromatogr A 1172:72–83

    Article  CAS  Google Scholar 

  16. Seeley JV, Libby EM, Hill Edwards KA, Seeley SK (2009) J Chromatogr A 1216:1650–1657

    Article  CAS  Google Scholar 

  17. Héberger K (2007) J Chromatogr A 1158:273–305

    Article  Google Scholar 

  18. Kaliszan R (2007) Chem Rev 107:3212–3246

    Article  CAS  Google Scholar 

  19. Vitha M, Carr PW (2006) J Chromatogr A 1126:143–194

    Article  CAS  Google Scholar 

  20. Arey JS, Nelson RK, Xu L, Reddy CM (2005) Anal Chem 77:7172–7182

    Article  CAS  Google Scholar 

  21. Poole SK, Poole CF (2008) J Sep Sci 31:1118–1123

    Article  CAS  Google Scholar 

  22. Abraham MH (2000) Database of general solvation model molecular descriptors. University College, London

    Google Scholar 

  23. Krawczuk A, Voelkel A, Lulek J, Urbaniak R, Szyrwińska K (2003) J Chromatogr A 1018:63–71

    Article  CAS  Google Scholar 

  24. Gramatica P, Navas N, Todeschini R (1998) Chemom Intell Lab Syst 40:53–63

    Article  CAS  Google Scholar 

  25. Liu SS, Liu Y, Yin DQ, Wang XD, Wang LS (2006) J Sep Sci 29:296–301

    Article  CAS  Google Scholar 

  26. Ghavami R, Sadeghi F (2009) Chromatographia 70:851–868

    Article  CAS  Google Scholar 

  27. Jäntschi L, Bolboacă SD, Diudea MV (2007) Int J Mol Sci 8:1125–1157

    Article  Google Scholar 

  28. Hasan MN, Jurs PC (1988) Anal Chem 60:978–982

    Article  CAS  Google Scholar 

  29. Robbat A Jr, Xyrafas G, Marshall D (1988) Anal Chem 60:982–985

    Article  CAS  Google Scholar 

  30. Ren Y, Liu H, Yao X, Liu M (2007) Anal Bioanal Chem 388:165–172

    Article  CAS  Google Scholar 

  31. Talete SRL (2006) DRAGON version 5.4 for windows (Software for molecular descriptor calculations) http://www.talete.mi.it/

  32. Kennard RW, Stone LA (1969) Technometrics 11:137–148

    Article  Google Scholar 

  33. Dorofeeva OV, Novikov VP, Moiseeva NF, Yungman VS (2005) J Struct Chem 46:237–242

    Article  CAS  Google Scholar 

  34. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Book  Google Scholar 

  35. Leardi R (ed) (2003) Nature-Inspired methods in chemometrics: genetic algorithms and artificial neural networks (data handling in science and technology, vol 23). Elsevier, Amsterdam

    Google Scholar 

  36. Wehrens R, Buydens LMC (1998) Trends Anal Chem 17:193–203

    Article  CAS  Google Scholar 

  37. Forina M, Lanteri S, Armanino C, Casolino C, Casale M, Oliver P, V-PARVUS (2008) Dip chimica e tecnologie farmaceutiche ed alimentari, University of Genova http://www.parvus.unige.it

  38. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  39. Derks EPPA, Buydens LMC (1998) Chemom Intell Lab Syst 41:171–184

    Article  CAS  Google Scholar 

  40. Copyright ©1996–2001 JavaNNS Group, Wilhelm-Schickard-Institute for Computer Science (WSI), University of Tübingen, Germany

  41. Wold S, Sjöström M, Eriksson L (2001) Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  42. Martens H, Naes T (1993) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  43. Nord LI, Jacobsson SP (1998) Chemom Intell Lab Syst 44:153–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Antonio D’Archivio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Archivio, A.A., Incani, A. & Ruggieri, F. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography. Anal Bioanal Chem 399, 903–913 (2011). https://doi.org/10.1007/s00216-010-4326-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4326-z

Keywords

Navigation