Skip to main content

Advertisement

Log in

Modeling the relative impact of capsular tissue effects on implanted glucose sensor time lag and signal attenuation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Little is known mechanistically about why implanted glucose sensors lag behind blood glucose levels in both the time to peak sensor response and the magnitude of peak sensor response. A mathematical model of glucose transport from capillaries through surrounding tissue to the sensor surface was constructed to address how different aspects of the tissue affect glucose transport to an implanted sensor. Physiologically relevant values of capsule diffusion coefficient, capsule porosity, cellular glucose consumption, capsule thickness, and subcutaneous vessel density were used as inputs to create simulated sensor traces that mimic experimental instances of time lag and concentration attenuation relative to a given blood glucose profile. Using logarithmic sensitivity analysis, each parameter was analyzed to study the effect of these variables on both lag and attenuation. Results identify capsule thickness as the strongest determinant of sensor time lag, while subcutaneous vessel density and capsule porosity had the largest effects on attenuation of glucose that reaches the sensor surface. These findings provide mechanistic insight for the rational design of sensor modifications that may alleviate the deleterious consequences of tissue effects on implanted sensor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Diabetes Fact Sheet, 2007. Department of Health and Human Services 2007

  2. Bloomgarden ZT (2002) Treatment issues in type 1 diabetes. Diab Care 25(1):230–238

    Article  Google Scholar 

  3. Garg SK (2009) The future of continuous glucose monitoring. Diabetes Technol Ther 11(Suppl 1):S1–S3

    CAS  Google Scholar 

  4. Skyler JS (2009) Continuous glucose monitoring: an overview of its development. Diabetes Technol Ther 11(Suppl 1):S5–S10

    CAS  Google Scholar 

  5. Wisniewski N, Klitzman B, Miller B, Reichert WM (2001) Decreased analyte transport through implanted membranes: differentiation of biofouling from tissue effects. J Biomed Mater Res 57(4):513–521

    Article  CAS  Google Scholar 

  6. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20(12):2388–2403

    Article  CAS  Google Scholar 

  7. Reichert WM, Sharkawy AA (1999) Active implants: biosensors. handbook of biomaterials evaluation: scientific, technical, and clinical testing of implant materials. Taylor and Francis, Philadelphia, pp 439–460

    Google Scholar 

  8. Frost MC, Meyerhoff ME (2002) Implantable chemical sensors for real-time clinical monitoring: progress and challenges. Curr Opin Chem Biol 6(5):633–641

    Article  CAS  Google Scholar 

  9. Clark H, Barbari TA, Stump K, Rao G (2000) Histologic evaluation of the inflammatory response around implanted hollow fiber membranes. J Biomed Mater Res 52(1):183–192

    Article  CAS  Google Scholar 

  10. Dungel P, Long N, Yu B, Moussy Y, Moussy F (2007) Study of the effects of tissue reactions on the function of implanted glucose sensors. J Biomed Mater Res 85A(3):699–706

    Article  Google Scholar 

  11. Anderson JM (2001) Biological responses to materials. Annu Rev Mater Sci 31(1):81

    Article  CAS  Google Scholar 

  12. Yu B, Ju Y, West L, Moussy Y, Moussy F (2007) An investigation of long-term performance of minimally invasive glucose biosensors. Diab Technol Ther 9(3):265–275

    Article  CAS  Google Scholar 

  13. Koschwanez HE, Yap FY, Klitzman B, Reichert WM (2008) In vitro and in vivo characterization of porous poly-l-lactic acid coatings for subcutaneously implanted glucose sensors. J Biomed Mater Res 87A(3):792–807

    Article  CAS  Google Scholar 

  14. Gerritsen M, Jansen JA, Kros A, Vriezema DM, Sommerdijk NAJM, Nolte RJM et al (2001) Influence of inflammatory cells and serum on the performance of implantable glucose sensors. J Biomed Mater Res 54(1):69–75

    Article  CAS  Google Scholar 

  15. Wisniewski N, Moussy F, Reichert WM (2000) Characterization of implantable biosensor membrane biofouling. Fresenius J Anal Chem 366(6–7):611–621

    Article  CAS  Google Scholar 

  16. Norton LW, Koschwanez HE, Wisniewski NA, Klitzman B, Reichert WM (2007) Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response. J Biomed Mater Res A 81(4):858–869

    CAS  Google Scholar 

  17. Patil SD, Papadmitrakopoulos F, Burgess DJ (2007) Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Control Release 117(1):68–79

    Article  CAS  Google Scholar 

  18. Clark HR, Barbari TA, Rao G (1999) Modeling the response time of an in vivo glucose affinity sensor. Biotechnol Prog 15(2):259–266

    Article  CAS  Google Scholar 

  19. Sharkawy AA, Klitzman B, Truskey GA, Reichert WM (1997) Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J Biomed Mater Res 37(3):401–412

    Article  CAS  Google Scholar 

  20. Yuan F (1998) Transvascular drug delivery in solid tumors. Semin Radiat Oncol 8(3):164–175

    Article  CAS  Google Scholar 

  21. Ahmed N, Kansara M, Berridge MV (1997) Acute regulation of glucose transport in a monocyte-macrophage cell line: Glut-3 affinity for glucose is enhanced during the respiratory burst. Biochem J 327:369–375

    CAS  Google Scholar 

  22. Ciaraldi TP, Kolterma OG, Siegel JA, Olefsky JM (1979) Insulin-stimulated glucose transport in human adipocytes. Am J Physiol Gastrointest Liver Physiol 236(6):621–625

    Google Scholar 

  23. Koschwanez HE. The effect of porous poly-l-lactic acid coatings on tissue response and subsequent glucose sensor performance [PhD Dissertation]. Durham, NC USA: Duke University; 2009.

  24. Armour JC, Lucisano JY, McKean BD, Gough DA (1990) Application of chronic intravascular blood glucose sensor in dogs. Diabetes 39(12):1519–1526

    Article  CAS  Google Scholar 

  25. Kholodenko BN, Hoek JB, Westerhoff HV, Brown GC (1997) Quantification of information transfer via cellular signal transduction pathways. FEBS Lett 419(2):430–434

    Article  Google Scholar 

  26. Updike SJ, Shults MC, Rhodes RK, Gilligan BJ, Luebow JO, von Heimburg D (1994) Enzymatic glucose sensors. Improved long-term performance in vitro and in vivo. ASAIO J 40(2):157–163

    CAS  Google Scholar 

  27. Sieminski AL, Gooch KJ (2000) Biomaterial-microvasculature interactions. Biomaterials 21(22):2233–2241

    Article  CAS  Google Scholar 

  28. Sharkawy AA, Klitzman B, Truskey GA, Reichert WM (1998) Engineering the tissue which encapsulates subcutaneous implants. III. Effective tissue response times. J Biomed Mater Res 40(4):598–605

    Article  CAS  Google Scholar 

  29. Ward WK, Wood MD, Troupe JE (2000) Understanding spontaneous output fluctuations of an amperometric glucose sensor: effect of inhalation anesthesia and use of a nonenzyme containing electrode. ASAIO J 46(5):540–546

    Article  CAS  Google Scholar 

  30. Dewhirst MW, Tso CY, Oliver R, Gustafson CS, Secomb TW, Gross JF (1989) Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int J Radiat Oncol Biol Phys 17(1):91–99

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an NIH Biotechnology Predoctoral Fellowship, T32 GM 8555 (MTN) and NIH Grant DK 54932 (WMR). The authors thank Mr. Robert D. Kirkton, Dr. Nima Badie, and Dr. Charles S. Wallace for valuable feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Reichert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, M.T., Yuan, F. & Reichert, W.M. Modeling the relative impact of capsular tissue effects on implanted glucose sensor time lag and signal attenuation. Anal Bioanal Chem 398, 1695–1705 (2010). https://doi.org/10.1007/s00216-010-4097-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4097-6

Keywords

Navigation