Skip to main content

Advertisement

Log in

The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The growing need for analytical devices requiring smaller sample volumes, decreased power consumption and improved performance have been driving forces behind the rapid growth in nanomaterials research. Due to their dimensions, nanostructured materials display unique properties not traditionally observed in bulk materials. Characteristics such as increased surface area along with enhanced electrical/optical properties make them suitable for numerous applications such as nanoelectronics, photovoltaics and chemical/biological sensing. In this review we examine the potential that exists to use nanostructured materials for biosensor devices. By incorporating nanomaterials, it is possible to achieve enhanced sensitivity, improved response time and smaller size. Here we report some of the success that has been achieved in this area. Many nanoparticle and nanofibre geometries are particularly relevant, but in this paper we specifically focus on organic nanostructures, reviewing conducting polymer nanostructures and carbon nanotubes.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Auffan M, Rose J, Bottero J, Lowry G, Jolivet J, Wiesner M (2009) Nat Nanotech 4:634–641

    Google Scholar 

  2. Pushparaj VL, Shaijumon M, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Proc Nat Acad Sci USA 104:13574–13577

  3. Cadek M, Coleman J, Ryan KP, Nicolosi V, Bister G, Fonseca A, Nagy JB, Szostak K, Béguin F, Blau WJ (2004) Nano Lett 4:353–356

    Google Scholar 

  4. Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG (2006) Adv Mater 18:637–640

    Google Scholar 

  5. Fanchini G, Miller S, Parekh LB, Chhowalla M (2008) Nano Lett 8:2176–2179

    Article  CAS  Google Scholar 

  6. Xu K, Huang J, Ye Z, Ying Y, Li Y (2009) Sensors 9:5534–5557

    Article  CAS  Google Scholar 

  7. Liu ZM, Li ZJ, Shen GL, Yu RQ (2009) Anal Lett 42:3046–3057

    Google Scholar 

  8. Chen J, Winther-Jensen B, Lynam C, Ngamna O, Moulton S, Zhang W, Wallace GG (2006) Electrochem Solid St Lett 9:H68–H70

    Google Scholar 

  9. Ko YJ, Maeng JH, Ahn Y, Hwang SY, Cho NG, Lee SH (2008) Electrophoresis 29:3466–3476

    Google Scholar 

  10. Healy DA, Hayes CJ, Leonard P, McKenna L, O’Kennedy R (2007) Trends Biotechnol 25:125–131

    Google Scholar 

  11. Byrne B, Stack E, Gilmartin N, O’Kennedy R (2009) Sensors 9:4407–4445

    Google Scholar 

  12. Sanvicens N, Pastells C, Pascual N, Marco MP (2009) Trends Anal Chem 28:1243–1252

    Google Scholar 

  13. Sepúlveda B, González-Díaz JB, García-Martín A, Lechuga LM, Armelles G (2010) Phys Rev Lett 104:147401

    Google Scholar 

  14. Leland CC Jr, Champ L (1962) Ann NY Acad Sci 102:29–45

    Google Scholar 

  15. Halliwell CM, Simon E, Toh C-S, Bartlett PN, Cass AEG (2002) Anal Chim Acta 453:191–200

    Article  CAS  Google Scholar 

  16. Qu F, Yang M, Jiang J, Shen G, Yu R (2005) Anal Biochem 344:108–14

    Article  CAS  Google Scholar 

  17. Rahman MA, Kwon N-H, Won M-S, Choe ES, Shim Y-B (2005) Anal Chem 77:4854–60

    Article  CAS  Google Scholar 

  18. Morrin A, Ngamna O, Killard AJ, Moulton SE, Smyth MR, Wallace GG (2005) Electroanalysis 17:423–430

    Article  CAS  Google Scholar 

  19. Hong C, Ying X, Pin-Gang H, Yu-Zhi F (2003) Electroanalysis 15:1864–70

    Article  Google Scholar 

  20. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM (2009) Nano Today 4:244–51

    Article  Google Scholar 

  21. Wang J (2009) ChemPhysChem 10:1748–55

    Google Scholar 

  22. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Electroanalysis 18:533–50

    Article  CAS  Google Scholar 

  23. Hahm J-i, Lieber CM (2003) Nano Lett 4:51–54

    Google Scholar 

  24. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Nat Biotechnol 23:1294–1301

    Article  CAS  Google Scholar 

  25. Ates M, Sarac AS (2009) Prog Org Coat 66:337–358

    Article  CAS  Google Scholar 

  26. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  27. Dresselhaus M, Dresselhaus G, Avouris P (eds)(2001) Carbon nanotubes (Topics in Applied Physics 80). Springer, Berlin

  28. Haddon RC (2002) Acc Chem Res 35:997–1113

    Google Scholar 

  29. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  30. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Microchim Acta 152:187–214

    Article  CAS  Google Scholar 

  31. Thess A, Lee R, Nikolaev P, Dai H, Petit P et al (1996) Science 273:483–487

    Article  CAS  Google Scholar 

  32. Bandow S, Rao AM, Williams KA, Thess A, Smalley RE, Eklund PC (1997) J Phys Chem B 101:8839–8842

    Article  CAS  Google Scholar 

  33. Lynam C, Moulton SE, Wallace GG (2007) Adv Mater 19:1244–1248

    Article  CAS  Google Scholar 

  34. Ausman KD, Piner R, Lourie O, Ruoff RS, Korobov M (2000) J Phys Chem B 104:8911–8915

    Article  CAS  Google Scholar 

  35. Lynam C, Wallace GG, Officer DL (2007) J Nanosci Nanotechnol 7:3487–3494

    Google Scholar 

  36. Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT, Liu J, Smalley RE (2000) Chem Phys Lett 324:213–216

    Article  CAS  Google Scholar 

  37. Hu H, Bhowmik P, Zhao B, Hamon MA, Itkis ME, Haddon RC (2001) Chem Phys Lett 345:25–28

    Article  CAS  Google Scholar 

  38. Hu H, Ni YC, Montana V, Haddon RC, Parpura V (2004) Nano Lett 4:507–511

    Article  CAS  Google Scholar 

  39. Kong H, Gao C, Yan DY (2004) Macromolecules 37:4022–4030

    Article  CAS  Google Scholar 

  40. Chen QD, Dai LM, Gao M, Huang SM, Mau A (2001) J Phys Chem B 105:618–622

    Article  CAS  Google Scholar 

  41. Hazani M, Naaman R, Hennrich F, Kappes MM (2003) Nano Lett 3:153–155

    Article  CAS  Google Scholar 

  42. Fu KF, Huang WJ, Lin Y, Zhang DH, Hanks TW et al (2002) J Nanosci Nanotechnol 2:457–461

    Article  CAS  Google Scholar 

  43. Huang WJ, Taylor S, Fu KF, Lin Y, Zhang DH et al (2002) Nano Lett 2:311–314

    Article  CAS  Google Scholar 

  44. Liu JQ, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Electroanalysis 17:38–46

    Article  CAS  Google Scholar 

  45. Gooding JJ, Wibowo R, Liu JQ, Yang WR, Losic D et al (2003) J Am Chem Soc 125:9006–9007

    Article  CAS  Google Scholar 

  46. Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C (2002) Nature 420:761

    Google Scholar 

  47. Dwyer C, Guthold M, Falvo M, Washburn S, Superfine R, Erie D (2002) Nanotechnology 13:601–604

    Article  CAS  Google Scholar 

  48. Lee CS, Baker SE, Marcus MS, Yang WS, Eriksson MA, Hamers RJ (2004) Nano Lett 4:1713–1716

    Article  CAS  Google Scholar 

  49. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M et al (2003) Proc Natl Acad Sci USA 100:4984–4989

    Article  CAS  Google Scholar 

  50. Shim M, Kam NWS, Chen RJ, Li YM, Dai HJ (2002) Nano Lett 2:285–288

    Article  CAS  Google Scholar 

  51. Chen RJ, Zhang YG, Wang DW, Dai HJ (2001) J Am Chem Soc 123:3838–3839

    Article  CAS  Google Scholar 

  52. Guo ZJ, Sadler PJ, Tsang SC (1998) Adv Mater 10:701–703

    Article  CAS  Google Scholar 

  53. Moulton SE, Minett AI, Murphy R, Ryan KP, McCarthy D et al (2005) Carbon 43:1879–1884

    Article  CAS  Google Scholar 

  54. Moulton SE, Maugey M, Poulin P, Wallace GG (2007) J Am Chem Soc 129:9452–9457

    Article  CAS  Google Scholar 

  55. Lynam C, Gilmartin N, Minett AI, O'Kennedy R, Wallace G (2009) Carbon 47:2337–2343

    Article  CAS  Google Scholar 

  56. Gerard M, Chaubey A, Malhotra BD (2002) Biosens Bioelectron 17:345–359

    Article  CAS  Google Scholar 

  57. Lahiff E, Woods T, Blau W, Wallace GG, Diamond D (2009) Synth Met 159:741–748

    Article  CAS  Google Scholar 

  58. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Chem Commun 578–580

  59. Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ (1992) Nature 357:477–479

    Article  CAS  Google Scholar 

  60. Greenham NC, Moratti SC, Bradley DDC, Friend RH, Holmes AB (1993) Nature 365:628–630

    Article  CAS  Google Scholar 

  61. Arias AC, Granström M, Thomas DS, Petritsch K, Friend RH (1999) Phys Rev B 60:1854

    Google Scholar 

  62. Morrin A, Ngamna O, O'Malley E, Kent N, Moulton SE et al (2008) Electrochim Acta 53:5092–5099

    Article  CAS  Google Scholar 

  63. Joshi PP, Merchant S, Wang Y, Schmidtke DW (2005) Anal Chem 77:3183–3188

    Google Scholar 

  64. MacDiarmid AG (2001) Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  65. Yue J, Wang ZH, Cromack KR, Epstein AJ, MacDiarmid AG (1991) J Am Chem Soc 113:2665–2671

    Article  CAS  Google Scholar 

  66. Lahiff E, Lynam C, Gilmartin N, Wallace G, O’Kennedy R, Diamond D (2009) Mater Res Soc Symp Proc 240-WW06-02

  67. Kincal D, Kumar A, Child AD, Reynolds JR (1998) Synth Met 92:53–56

    Article  CAS  Google Scholar 

  68. Spinks GM, Mottaghitalab V, Bahrami-Samani M, Whitten PG, Wallace GG (2006) Adv Mater 18:637–640

    Article  CAS  Google Scholar 

  69. Guimard NK, Gomez N, Schmidt CE (2007) Prog Polym Sci 32:876–921

    Google Scholar 

  70. Li D, Huang J, Kaner RB (2008) Acc Chem Res 42:135–145

    Article  Google Scholar 

  71. Dhand C, Singh SP, Arya SK, Datta M, Malhotra BD (2007) Anal Chim Acta 602:244–251

    Article  CAS  Google Scholar 

  72. Huang J, Kaner RB (2003) J Am Chem Soc 126:851–855

    Article  Google Scholar 

  73. Huang JX, Kaner RB (2006) Chem Commun 367–376

  74. Khan R, Solanki P, Kaushik A, Singh S, Ahmad S, Malhotra B (2009) J Polym Res 16:363–373

    Article  CAS  Google Scholar 

  75. Malhotra BD, Chaubey A, Singh SP (2006) Anal Chim Acta 578:59–74

    Article  CAS  Google Scholar 

  76. Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V (2007) J Nanosci Nanotechnol 7:2206–2210

    Article  CAS  Google Scholar 

  77. Peng H, Soeller C, Vigar NA, Caprio V, Travas-Sejdic J (2007) Biosens Bioelectron 22:1868–1873

    Article  CAS  Google Scholar 

  78. Sangodkar H, Sukeerthi S, Srinivasa RS, Lal R, Contractor AQ (1996) Anal Chem 68:779–783

    Article  CAS  Google Scholar 

  79. Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomaterials 28:791–805

    Google Scholar 

  80. Wang JJ, Myung NV, Yun MH, Monbouquette HG (2005) J Electroanal Chem 575:139–146

    Article  CAS  Google Scholar 

  81. Lisdat F, Schafer D (2008) Anal Bioanal Chem 391:1555–1567

    Article  CAS  Google Scholar 

  82. Daniels JS, Pourmand N (2007) Electroanalysis 19:1239–1257

    Article  CAS  Google Scholar 

  83. Wang J (2005) Electroanal 17:7–14

    Article  CAS  Google Scholar 

  84. Yun Y, Dong Z, Shanov V, Heineman WR, Halsall HB, Bhattacharya A, Conforti L, Narayan RK, Ball WS, Schulz MJ (2007) Nano Today 2:30–37

    Google Scholar 

  85. Pumera M, Sánchez S, Ichinose I, Tang J (2007) Sens Actuators B 123:1195–1205

    Google Scholar 

  86. Wang J (2005) Analyst 130:421–426

    Article  CAS  Google Scholar 

  87. Gooding J (2005) Electrochim Acta 50:3049–3060

    Article  CAS  Google Scholar 

  88. Zhao YD, Zhang WD, Chen H, Luo QF, Li SFY (2002) Sens Actuators B 87:168–172

    Google Scholar 

  89. Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Anal Chem 74:1993–1997

  90. Davis JJ, Coles RJ, Hill HAO (1997) J Electroanal Chem 440:279–282

    Google Scholar 

  91. Li J, Cassell A, Delzeit L, Han J, Meyyappan M (2002) J Phys Chem B 106:9299–9305

    Article  CAS  Google Scholar 

  92. Gao M, Dai LM, Wallace GG (2003) Electroanalysis 15:1089–1094

    Article  CAS  Google Scholar 

  93. Goepel W, Jones TA, Kleitz M, Lundstroem J, Seiyama T (1991) In: Göpel W, Hesse J, Zemel JN (eds) Sensors: a comprehensive survey. VCH-Verlag, Weinheim

  94. Balasubramanian K, Burghard M (2006) Anal Bioanal Chem 385:452–468

    Article  CAS  Google Scholar 

  95. Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL et al (2007) Talanta 74:291–307

    Article  CAS  Google Scholar 

  96. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Angew Chem Int Ed Engl 49:2114–2138

    Article  CAS  Google Scholar 

  97. Jacobs CB, Peairs MJ, Venton BJ (2010) Anal Chim Acta 662:105–127

    Article  CAS  Google Scholar 

  98. Rusling JF, Zhang Z (2003) Designing functional biomolecular films on electrodes. In: Rusling JF (ed) Biomolecular films: design, function, and applications (Surfactant Series, vol 111). Marcel Dekker, New York

  99. Rubianes MD, Rivas GA (2003) Electrochem Commun 5:689–694

    Article  CAS  Google Scholar 

  100. Guo ML, Chen JH, Li J, Nie LH, Yao SZ (2004) Electroanalysis 16:1992–1998

    Article  CAS  Google Scholar 

  101. Li G, Liao JM, Hu GQ, Ma NZ, Wu PJ (2005) Biosens Bioelectron 20:2140–2144

    Article  CAS  Google Scholar 

  102. Cai H, Cao X, Jiang Y, He P, Fang Y (2003) Anal Bioanal Chem 375:287–293

    CAS  Google Scholar 

  103. Zhu N, Chang Z, He P, Fang Y (2005) Anal Chim Acta 545:21–26

    Article  CAS  Google Scholar 

  104. Ferancová A, Ovádeková R, Vaníková M et al (2006) Electroanalysis 18:163–168

    Google Scholar 

  105. Kerman K, Morita Y, Takamura Y, Ozsoz M, Tamiya E (2004) Electroanalysis 16:1667–1672

    Article  CAS  Google Scholar 

  106. Ye Y, Ju H (2005) Biosens Bioelectron 21:735–741

    Article  CAS  Google Scholar 

  107. Li J, Ng HT, Cassell A, Fan W, Chen H et al (2003) Nano Lett 3:597–602

    Article  CAS  Google Scholar 

  108. Wang J, Kawde AN, Musameh M (2003) Analyst 128:912–916

    Article  CAS  Google Scholar 

  109. Heng LY, Chou A, Yu J, Chen Y, Gooding JJ (2005) Electrochem Commun 7:1457–1462

    Article  CAS  Google Scholar 

  110. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF (2006) J Am Chem Soc 128:11199–11205

    Google Scholar 

  111. Wang J, Liu G, Jan M (2004) J Am Chem Soc 126:3010–3011

    Google Scholar 

  112. Wang J, Liu G, Jan MR (2004) J Am Chem Soc 126:3010–3011

    Article  CAS  Google Scholar 

  113. Lin YY, Wang J, Liu G, Wu H, Wai CM, Lin Y (2008) Biosens Bioelectron 23:1659–1665

    Article  CAS  Google Scholar 

  114. Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Adv Mater 19:3214–3228

    Article  CAS  Google Scholar 

  115. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Proc Natl Acad Sci USA 100:4984–489

    Google Scholar 

  116. Star A, Tu E, Niemann J, Gabriel JCP, Joiner CS, Valcke C (2006) Proc Natl Acad Sci USA 103:921–926

    Google Scholar 

  117. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Nat Biotechnol 23:1294–1301

    Google Scholar 

  118. Stokes P, Khondaker SI (2008) Nanotechnology 19:175202

    Google Scholar 

  119. Lu F, Gu L, Meziani MJ, Wang X, Luo PG, Veca LM, Cao L, Sun YP (2009) Adv Mater 21:139–152

  120. Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Anal Chem 79:782–787

    Google Scholar 

  121. Li C, Currelli M, Lin H, Lei B, Ishikawa FN, Datar R, Cote R, Thompson M, Zhou C (2005) Am Chem Soc 127:484–485

    Google Scholar 

  122. Byon HR, Choi HC (2006) J Am Chem Soc 128:2188–2189

    Google Scholar 

  123. Welsher K, Liu Z, Daranciang D, Dai H (2008) Nano Lett 8:586–590

    Google Scholar 

  124. Barone PW, Baik S, Heller DA, Strano MS (2005) Nat Mater 4:86–92

    Google Scholar 

  125. Zhang L, Peng H, Kilmartin PA, Soeller C, Travas-Sejdic J (2007) Electroanalysis 19:870–875

    Article  CAS  Google Scholar 

  126. Zhu N, Chang Z, He P, Fang Y (2006) Electrochim Acta 51:3758–3762

    Article  CAS  Google Scholar 

  127. Singh R, Prasad R, Sumana G, Arora K, Sood S et al (2009) Biosens Bioelectron 24:2232–2238

    Article  CAS  Google Scholar 

  128. Geetha S, Rao CRK, Vijayan M, Trivedi DC (2006) Anal Chim Acta 568:119–125

    Article  CAS  Google Scholar 

  129. Rahman MA, Park D-S, Chang S-C, McNeil CJ, Shim Y-B (2006) Biosens Bioelectron 21:1116–1124

    Article  CAS  Google Scholar 

  130. Ramanathan K, Bangar MA, Yun M, Chen W, Myung NV, Mulchandani A (2004) J Am Chem Soc 127:496–497

    Article  Google Scholar 

  131. Wei F, Liao W, Xu Z, Yang Y, Wong DT, Ho C-M (2009) Small 5:1784–1790

    Article  CAS  Google Scholar 

  132. Azioune A, Ben Slimane A, Hamou LA, Pleuvy A, Chehimi MM, et al. (2004) Langmuir 20:3350–3356

  133. Tolani S, Craig M, DeLong R, Ghosh K, Wanekaya A (2009) Anal Bioanal Chem 393:1225–1231

    Article  CAS  Google Scholar 

  134. Agüí L, Yáñez-Sedeño P, Pingarrón JM (2008) Anal Chim Acta 622:11–47

    Article  Google Scholar 

  135. Cheng G, Zhao J, Tu Y, He P, Fang Y (2005) Anal Chim Acta 533:11–16

    Article  CAS  Google Scholar 

  136. Prabhakar N, Arora K, Singh H, Malhotra BD (2008) J Phys Chem B 112:4808–4816

    Article  CAS  Google Scholar 

  137. Tang H, Chen J, Yao S, Nie L, Deng G, Kuang Y (2004) Anal Biochem 331:89–97

    CAS  Google Scholar 

  138. Claussen JC, Franklin AD, Ul Haque A, Porterfield DM, Fisher TS (2009) ACS Nano 3:37–44

  139. Liu Y, Wu S, Ju H, Xu L (2007) Electroanal 19:986–992

  140. Xiao Y, Li CM (2008) Electroanalysis 20:648–662

    Google Scholar 

  141. Diamond D, Coyle S, Scarmagnani S, Hayes J (2008) Chem Rev 108:652–679

    Article  CAS  Google Scholar 

  142. Lahiff E, Ryu CY, Curran S, Minett AI, Blau WJ, Ajayan PM (2003) Nano Lett 3:1333–1337

    Article  CAS  Google Scholar 

  143. Virji S, Kaner RB, Weiller BH (2006) J Phys Chem B 110:22266–22270

    Article  CAS  Google Scholar 

  144. Bandodkar A, Dhand C, Arya S, Pandey M, Malhotra B (2010) Biomed Microdev 12:63–70

    Google Scholar 

  145. So H-M, Won K, Kim YH, Kim B-K, Ryu BH et al (2005) J Am Chem Soc 127:11906–11907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon research supported by the Science Foundation Ireland under grant no. 05/CE3/B754. NG acknowledges the EU Seventh Framework grant no. FP7-SME-2008-232037. CL acknowledges the EU Seventh Framework Programme for support in the form of a Marie Curie Re-Integration Grant (no. PIRG02-GA-2007-224880). EL and DD acknowledge SFI 07/CE/I1147—“CLARITY: Centre for Sensor Web Technologies”, and Enterprise Ireland PC/2008/0149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emer Lahiff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahiff, E., Lynam, C., Gilmartin, N. et al. The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Anal Bioanal Chem 398, 1575–1589 (2010). https://doi.org/10.1007/s00216-010-4054-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4054-4

Keywords

Navigation