Skip to main content
Log in

Competitive capacitive biosensing technique (CCBT): A novel technique for monitoring low molecular mass analytes using glucose assay as a model study

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel technique for monitoring of low molecular mass analytes using a flow-injection capacitive biosensor is presented. The method is based on the ability of a small molecular mass analyte to displace a large analyte–carrier conjugate from the binding sites of an immobilized biorecognition element with weak affinity to both compounds. A model study was performed on glucose as the small molecular mass analyte. In the absence of glucose, binding of a glucose polymer or a glycoconjugate to concanavalin A results in a capacitance decrease. Upon introduction of glucose, it displaces a part of the bound glucose polymer or glycoconjugate leading to a partial restoration of capacitance. Experimental results show that the change in capacitance depends linearly on glucose concentration within the range from 1.0 × 10−5 to 1.0 × 10−1 M, corresponding to 1.8 µg ml−1 to 18 mg ml−1 in a logarithmic plot, with a detection limit of 1.0 × 10−6 (0.18 µg ml−1) under optimized conditions. In addition, by modifying the molecular mass of the glucose polymer, amount of biorecognition element, and buffer composition, we were able to tune the analyte-sensing range. The developed technique has the benefits of expanded dynamic range, high sensitivity, and excellent reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choy V, Patel N, Thibault J (2007) Biotechnol Lett 29:1075–1080

    Article  CAS  Google Scholar 

  2. Lieu Y-C, Wang FS, Lee W-C (2001) Biochem Eng J 7:17–25

    Article  Google Scholar 

  3. Ballerstadt R, Kholodnykh A, Evans C, Boretsky A, Motamedi M, Gowda A, McNichols R (2007) Anal Chem 79:6965–6974

    Article  CAS  Google Scholar 

  4. Diem P, Kalt L, Haueter U, Krinelke L, Fajfr R, Reihl B, Beyer U (2004) Diab Technol Ther 6:790–799

    Article  CAS  Google Scholar 

  5. Malitesta C, Losito I, Zambonin PG (1999) Anal Chem 71:1366–1370

    Article  CAS  Google Scholar 

  6. Gallego RG, Haseley SR, van Miegem VFL, Vliegenthart JFG, Kamerling JP (2004) Glycobiology 14:373–386

    Article  CAS  Google Scholar 

  7. Rounds RM, Ibey BL, Beier HT, Pishko MV, Coté GL (2007) J Fluoresc 17:57–63

    Article  CAS  Google Scholar 

  8. Chinnayelka S, McShane MJ (2004) Biomacromolecules 5:1657–1661

    Article  CAS  Google Scholar 

  9. Khalil OS (2004) Diab Technol Ther 6:660–697

    Article  CAS  Google Scholar 

  10. Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Biosens Bioelectron 20:2555–2565

    Article  CAS  Google Scholar 

  11. D’Auria S, Di Cesare N, Gryczynski Z, Rossi M, Lakowicz JR (2000) Biochem Biophys Res Commun 274:727–731

    Article  Google Scholar 

  12. D’Auria S, Di Cesare N, Taiano MS, Gryczynski Z, Rossi M, Lakowicz JR (2002) Anal Biochem 303:138–144

    Article  Google Scholar 

  13. Wenholt I, Hoekstra J, DeVries J (2006) Diabet Care 29:1805–1811

    Article  Google Scholar 

  14. Ivanov AE, Thammakhet C, Kuzimenkova MV, Thavarungkul P, Kanatharana P, Mikhalovska LI, Mikhalovsky SV, Galaev IY, Mattiasson B (2008) J Mol Recognit 21:89–95

    Article  CAS  Google Scholar 

  15. Ye K, Schultz JS (2003) Anal Chem 75:3451–3459

    Article  CAS  Google Scholar 

  16. Engström HA, Johansson R, Koch-Schmidt R, Gregorius K, Ohlson S, Bergström M (2008) Biomed Chromatogr 22:272–277

    Article  Google Scholar 

  17. Struve C, Kristensen JS, Gregorius K, Yu Y, Denmark, Patent: WO2006061208

  18. Liang F, Pan T, Sevick-Muraca EM (2005) Photochem Photobiol 81:1386–1394

    Article  CAS  Google Scholar 

  19. Schultz JS, Mansouri S, Goldstein IJ (1982) Diabet Care 5:245–253

    Article  CAS  Google Scholar 

  20. McCartney LJ, Pickup JC, Rolinski OJ, Birch DJS (2001) Anal Biochem 292:216–221

    Article  CAS  Google Scholar 

  21. Cheung KY, Mak WC, Trau D (2008) Anal Chim Acta 607:204–210

    Article  CAS  Google Scholar 

  22. Sato K, Anzai J-I (2006) Anal Bioanal Chem 384:1297–1301

    Article  CAS  Google Scholar 

  23. Beyer U, Fleischer A, Kage A, Haueter U, Ehwald R (2003) Biosens Bioelectron 18:1391–1397

    Article  CAS  Google Scholar 

  24. Labib M, Hedström M, Amin M, Mattiasson B (2009) Anal Chim Acta 634:255–261

    Article  CAS  Google Scholar 

  25. Labib M, Hedström M, Amin M, Mattiasson B (2009) Anal Bioanal Chem 393:1539–1544

    Article  CAS  Google Scholar 

  26. Labib M, Hedström M, Amin M, Mattiasson B (2009) Biotechnol Bioeng 104:312–320

    Article  CAS  Google Scholar 

  27. Labib M, Hedström M, Amin M, Mattiasson B (2010) Anal Chim Acta 659:194–200

    Article  CAS  Google Scholar 

  28. Jiang DC, Tang J, Liu BH, Yang PY, Shen X, Kong JL (2003) Biosens Bioelectron 18:1183–1191

    Article  CAS  Google Scholar 

  29. Numnuam A, Kanatharana P, Mattiasson B, Asawatreratanakul P, Wongkittisuksa B, Limsakul C, Thavarungkul P (2009) Biosens Bioelectron 24:2559–2565

    Article  CAS  Google Scholar 

  30. Bontidean I, Kumar A, Csöregi E, Galaev IY, Mattiasson B (2001) Angew Chem Int Ed 40:2676–2678

    Article  CAS  Google Scholar 

  31. Gestwicki JE, Cairo CW, Strong LE, Oetjen KA, Kiessling LL (2002) J Am Chem Soc 124:14922–14933

    Article  CAS  Google Scholar 

  32. Berggren C, Bjarnason B, Johansson G (1999) Instrum Sci Technolog 27:131–139

    Article  CAS  Google Scholar 

  33. Ramanaviciene A, Ramanavicius A (2004) Anal Bioanal Chem 379:287–293

    Article  CAS  Google Scholar 

  34. Ramanaviciene A, Ramanavicius A (2004) Biosens Bioelectron 20:1076–1082

    Article  CAS  Google Scholar 

  35. Lee S, Pérez-Luna VH (2005) Anal Chem 77:7204–7211

    Article  CAS  Google Scholar 

  36. Liao K-C, Hogen-Esch T, Richmond FJ, Marcu L, Loeb GE (2005) Proc SPIE 5691:129–145

    Article  CAS  Google Scholar 

  37. Aslan K, Lakowicz JR, Geddes CD (2004) Anal Biochem 330:145–155

    Article  CAS  Google Scholar 

  38. Aslan K, Zhang J, Lakowicz JR, Geddes CD (2004) J Fluoresc 14:391–400

    Article  CAS  Google Scholar 

  39. Nesatyy VJ, Suter MJ (2004) J Mass Spectrom 39:93–97

    Article  CAS  Google Scholar 

  40. Berggren C, Johansson G (1997) Anal Chem 69:3651–3657

    Article  CAS  Google Scholar 

  41. Berggren C, Bjarnason B, Johansson G (1998) Biosens Bioelectron 13:1061–1068

    Article  CAS  Google Scholar 

  42. So LL, Goldstein IJ (1968) Biochim Biophys Acta 165:398–404

    CAS  Google Scholar 

  43. Mandel DK, Kishore N, Brewer CF (1994) Biochemistry 33:1149–1156

    Article  Google Scholar 

  44. Chen B, Bestetti G, Day RM, Turner APF (1998) Biosens Bioelectron 13:779–785

    Article  CAS  Google Scholar 

  45. Piletska EV, Turner NW, Turner APF, Piletsky SA (2005) Biosens Bioelectron 108:132–139

    CAS  Google Scholar 

  46. Subrahmanyam S, Piletsky SA, Piletska EV, Chen B, Karim K, Turner APF (2001) Biosens Bioelectron 16:631–637

    Article  CAS  Google Scholar 

  47. Piletsky SA, Subrahmanyam S, Turner APF (2001) Sens Rev 21:292–296

    Article  Google Scholar 

  48. Chianella I, Lotierzo M, Piletsky SA, Tothill IE, Chen B, Karim K, Turner APF (2002) Anal Chem 74:1288–1293

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Ministry of Higher Education, Egypt is gratefully acknowledged for financial support to Mahmoud Labib during his study at the Department of Biotechnology, Lund University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Mattiasson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labib, M., Hedström, M., Amin, M. et al. Competitive capacitive biosensing technique (CCBT): A novel technique for monitoring low molecular mass analytes using glucose assay as a model study. Anal Bioanal Chem 397, 1217–1224 (2010). https://doi.org/10.1007/s00216-010-3641-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3641-8

Keywords

Navigation