Skip to main content
Log in

Combined use of X-ray photoelectron and Mössbauer spectroscopic techniques in the analytical characterization of iron oxidation state in amphibole asbestos

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Asbestos fibers are an important cause of serious health problems and respiratory diseases. The presence, structural coordination, and oxidation state of iron at the fiber surface are potentially important for the biological effects of asbestos because iron can catalyze the Haber–Weiss reaction, generating the reactive oxygen species ⋅OH. Literature results indicate that the surface concentration of Fe(III) may play an important role in fiber-related radical formation. Amphibole asbestos were analyzed by X-ray photoelectron spectroscopy (XPS) and Mössbauer spectroscopy, with the aim of determining the surface vs. bulk Fe(III)/Fetot ratios. A standard reference asbestos (Union Internationale Contre le Cancer crocidolite from South Africa) and three fibrous tremolite samples (from Italy and USA) were investigated. In addition to the Mössbauer spectroscopy study of bulk Fe(III)/Fetot ratios, much work was dedicated to the interpretation of the XPS Fe2p signal and to the quantification of surface Fe(III)/Fetot ratios. Results confirmed the importance of surface properties because this showed that fiber surfaces are always more oxidized than the bulk and that Fe(III) is present as oxide and oxyhydroxide species. Notably, the highest difference of surface/bulk Fe oxidation was found for San Mango tremolite—the sample that in preliminary cytotoxicity tests (MTT assay) had revealed a cell mortality delayed with respect to the other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Van Oss CJ, Naim JO, Costanzo PM, Gieise RF Jr, Wu W, Sorlung AF (1999) Impact of different asbestos species and other mineral particles on pulmonary pathogenesis. Clays Clay Miner 47:697–707

    Article  Google Scholar 

  2. Kane AB (1996) Mechanisms of mineral fibre carcinogenesis. In: Kane AB, Boffetta P, Saracci R, Wilbourn J (eds) IARC scientific publication 140. International Agency for Research on Cancer, Lyon

    Google Scholar 

  3. Fubini B, Otero Aréan C (1999) Chemical aspects of the toxicity of invale mineral dusts. Chem Soc Rev 28:373–381

    Article  CAS  Google Scholar 

  4. Kamp DW, Weitzman SA (1999) The molecular basis of asbestos induced lung injury. Thorax 54:638–652

    Article  CAS  Google Scholar 

  5. Robledo R, Mossman R (1999) Cellular and molecular mechanisms of asbestos-induced fibrosis. J Cell Physiol 180:158–166

    Article  CAS  Google Scholar 

  6. Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, Smith A (1981) Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Canc Inst 67:965–975

    CAS  Google Scholar 

  7. Fubini B (1993) In: Wahreit DB (ed) Fiber toxicology. Academic, San Diego

    Google Scholar 

  8. Fubini B (1996) Use of physico-chemical and cell free assays to evaluate the potential carcinogenicity of fibres. In: Kane AB, Boffetta P, Saracci R, Wilbourn J (eds) IARC scientific publication 140. International Agency for Research on Cancer, Lyon

    Google Scholar 

  9. Gilmour PS, Brown DM, Beswik PH, Macnee W, Rahman I, Donaldson K (1997) Free radical activity of industrial fibers: role of iron in oxidative stress and activation of transcription factors. Environ Health Persp 105(Suppl 5):1313–1317

    Article  CAS  Google Scholar 

  10. Fubini B, Fenoglio I, Elias Z, Poirot O (2001) On the variability of the biological responses to silicas: effect of origin, crystallinity and state of the surface on the generation of reactive oxygen species and consequent morphological transformations in cells. J Environ Pathol Toxicol Oncol 20:87–100

    Google Scholar 

  11. Gazzano E, Riganti C, Tomatis M, Turci F, Bosia A, Fubini B, Ghigo D (2005) Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 3: depletion of antioxidant defenses. J Toxicol Environ Health 68:41–49

    Article  CAS  Google Scholar 

  12. Favero-Longo SE, Castelli D, Salvadori O, Belluso E, Piervittori R (2005) Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum gr. and Sporastatia testudinea on serpentinized ultramafic rocks in an alpine environment. Int Biodeterior Biodegrad 56:17–27

    Article  CAS  Google Scholar 

  13. Seal S, Krezosky S, Barr TL, Petering DH, Klinowsky J, Evans PH (1996) Surface chemistry and biological pathogenicity of silicates: an X-ray photoelectron spectroscopic study. Proc R Soc Lond B 263:943–951

    Article  CAS  Google Scholar 

  14. Seal S, Krezosky S, Petering D, Barr TL, Klinowsky J, Evans P (1996) X-ray photoelectron spectroscopy investigations of the interaction of cells with pathogenic asbestoses. J Vac Sci Technol A 14:1770–1778

    Article  CAS  Google Scholar 

  15. Seal S, Krezosky S, Barr TL, Petering D, Evans PH, Klinowsky J (1997) Surface chemical interaction of fibrous asbestos with biocells: an ESCA study. J Hazard Mate 53:57–74

    Article  CAS  Google Scholar 

  16. Keane MJ, Stephens JW, Zhong BZ, Miller WE, Ong TM, Wallace WE (1999) A study of the effect of chrysotile fibre surface composition on genotoxicity in vitro. J Toxicol Environ Health 57:529–541

    Article  CAS  Google Scholar 

  17. Shen Z, Bosbach D, MF H Jr, Bish DL, Williams MG, Dodson RF, Aust AE (2000) Using in vitro iron deposition on asbestos to model body formation in human lung. Chem Res Toxicol 13:913–921

    Article  CAS  Google Scholar 

  18. Gold J, Amandusson H, Krozer A, Kasemo B, Ericsson T, Zanetti G, Fubini B (1997) Chemical characterization and reactivity of iron chelator-treated amphibole asbestos. Health Persp 105(suppl 5):1021–1030

    Article  Google Scholar 

  19. Long GJ, Cranshaw TE, Longworth G (1983) The ideal Mössbauer effect absorber thickness. Möss Eff Ref Data J 6:42–49

    Google Scholar 

  20. Lagarec K, Rancourt DG (1998) RECOIL. Mössbauer spectral analysis software for Windows, version 1.0. Department of Physics, University of Ottawa, Canada

    Google Scholar 

  21. Gunter ME, Dyar MD, Twamley B, FF F Jr, Cornelius C (2003) Composition, Fe3+/ΣFe, and crystal structure of non-asbestiform and asbestiform amphiboles from Libby, Montana, USA. Am Mineral 88:1970–1978

    CAS  Google Scholar 

  22. Gianfagna A, Andreozzi GB, Ballirano P, Mazziotti-Tagliani S, Bruni BM (2007) Structural and chemical contrasts between prismatic and fibrous fluoro-edenite from Biancavilla, Sicily, Italy. Can Mineral 45:249–262

    Article  CAS  Google Scholar 

  23. Seah MP (2001) ISO 15472:2001—surface chemical analysis. X-ray photoelectron spectrometers—calibration of energy scales. Surf Interface Anal 31:721–723

    Article  CAS  Google Scholar 

  24. Fairley N (1999–2003) CasaXPS version 2.3.15

  25. Shirley DA (1972) High resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714

    Article  Google Scholar 

  26. Seah MP (2003) Quantification in AES and XPS. In: Briggs D, Grant JT (eds) Surface analysis by auger and X-ray photoelectron spectroscopy. IM Publication Surface Science Spectra, Manchester

    Google Scholar 

  27. Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  28. Reilman RF, Msezane A, Manson STJ (1976) Relative intensities in photoelectron spectroscopy of atoms and molecules. J Electron Spectrosc Relat Phenom 8:389–394

    Article  CAS  Google Scholar 

  29. Scorciapino A (2007) Caratterizzazione di leghe NiP nanocristalline mediante Spettroscopia di Fotoelettronica a Raggi X. PhD Thesis, University of Cagliari

  30. Gries WH (1996) A universal predictive equation for the inelastic mean free path lengths of X-ray photoelectrons and auger electrons. Surf Interface Anal 24:38–50

    Article  CAS  Google Scholar 

  31. Stevens JG, Khasanov AM, Miller JW, Pollak H, Li Z (1998) Mössbauer mineral handbook. Mössbauer effect data center. Biltmore, Asheville

    Google Scholar 

  32. Stroink G, Blaauw C, White CG, Leiper W (1980) Mössbauer characteristics of UICC standard reference asbestos samples. Can Mineral 18:285–290

    CAS  Google Scholar 

  33. Andreozzi GB, Ballirano P, Gianfagna A, Mazziotti-Tagliani S, Pacella A (2009) Structural and spectroscopic characterization of a suite of fibrous amphiboles with high environmental and health relevance from Biancavilla (Sicily, Italy). Am Mineral 94:1333–1340

    Article  CAS  Google Scholar 

  34. Ballirano P, Andreozzi GB, Belardi G (2008) Crystal chemical and structural characterization of fibrous tremolite from Susa Valley, Italy, with comments on potential harmful effects on human health. Am Mineral 93:1349–1355

    Article  CAS  Google Scholar 

  35. Rancourt DG, Ping JY (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mossbauer spectroscopy. Nucl Instrum Meth B 58:85–87

    Article  Google Scholar 

  36. Dyar MD, Mackwell SM, McGuire AV, Cross LR, Robertson JD (1993) Crystal chemistry of Fe3+ and H+ in mantle kaersutite: implications for mantle metasomatism. Am Mineral 78:968–979

    CAS  Google Scholar 

  37. Olla M, Navarra G, Elsener B, Rossi A (2006) Nondestructive in-depth composition profile of oxy-hydroxide nanolayers on iron surfaces from ARXPS measurement. Surf Interface Anal 38:964–974

    Article  CAS  Google Scholar 

  38. Cutting RS, Coker VS, Fellowes JW, Lloyd JR, Vaughan DJ (2009) Mineralogical and morphological on the reduction of Fe (III) minerals by Geobacter sulfurreducens. Geochim Cosmochim Acta 73:4004–4022

    Article  CAS  Google Scholar 

  39. Zakaznova-Herzog VP, Nesbitt HW, Bancroft GM, Tse JS (2006) High resolution core and valence band XPS of non-conductor pyroxenes. Surf Sci 72:69–86

    Google Scholar 

  40. Zakaznova-Herzog VP, Nesbitt HW, Bancroft GM, Tse JS (2008) Characterization of leached layers on olivine and pyroxenes using high resolution XPS and density functional calculations. Geochim Cosmochim Acta 72:69–86

    Article  CAS  Google Scholar 

  41. Smith GC (2005) Evaluation of a simple correction for the hydrocarbon contamination layer in quantitative surface analysis by XPS. J Electron Spectrosc Relat Phenom 148:21–28

    Article  CAS  Google Scholar 

  42. Gupta RP, Sen SK (1974) Calculation of multiple structure of core p-vacancy levels. Phys Rev 10:71–77

    Article  CAS  Google Scholar 

  43. Gupta RP, Sen SK (1975) Calculation of multiple structure of core p-vacancy levels II. Phys Rev 12:15–19

    Article  CAS  Google Scholar 

  44. Pacella A, Andreozzi GB, Ballirano P, Gianfagna A (2008) Crystal chemical and structural characterization of fibrous tremolite from Ala di Stura (Lanzo Valley, Italy). Period Miner 77:51–62

    Google Scholar 

  45. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529

    Article  CAS  Google Scholar 

  46. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574

    Article  CAS  Google Scholar 

  47. Mathieu HJ, Landolt D (1986) Investigation of thin oxide films thermally grown in situ on Fe-24Cr and Fe-24Cr-11Mo by Auger electron spectroscopy and X-ray photoelectron spectroscopy. Corros Sci 26:547–559

    Article  CAS  Google Scholar 

  48. Schott J, Berner RA (1983) X-ray photoelectron studies of the mechanisms of iron silicate dissolution during weathering. Geochim Cosmochim Acta 47:2233–2240

    Article  CAS  Google Scholar 

  49. Velbel MA (1993) Formation of protective surface layers during silicate-mineral weathering under well-leached, oxidizing conditions. Am Mineral 78:405–414

    CAS  Google Scholar 

  50. Bergamini C, Fato R, Biagini G, Pugnaloni A, Giantomassi F, Foresti E, Lesci GI, Roveri N, Lenaz G (2006) Mitochondrial changes induced by natural and synthetic asbestos fibers: studies on isolated mitochondria. Cell Mol Biol 52:905–913

    Google Scholar 

  51. Pugnaloni A, Lucarini G, Giantomassi F, Lombardo L, Capella S, Belluso E, Zizzi A, Panico AM, Biagini G, Cardile V (2007) In vitro study of biofunctional indicators after exposure to asbestos-like fluoro-edenite fibres. Cell Mol Biol 53:965–980

    Google Scholar 

  52. Gianfagna A, Andreozzi GB, Ballirano P, Pacella A, Mazziotti-Tagliani S, Bruni BM, Paoletti L, Cardile V, Pugnaloni A, Giantomassi F, Fournier J, Stievano L (2008) Characterization of fibrous tremolites of environmental and health interest. 33rd International Geological Congress (Session Earth and Health–Medical Geology), Oslo, Norway. # MGH-01835P (abstr)

Download references

Acknowledgements

The Universities of Cagliari and of Roma “La Sapienza” are acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovanni B. Andreozzi or Antonella Rossi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 839 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fantauzzi, M., Pacella, A., Atzei, D. et al. Combined use of X-ray photoelectron and Mössbauer spectroscopic techniques in the analytical characterization of iron oxidation state in amphibole asbestos. Anal Bioanal Chem 396, 2889–2898 (2010). https://doi.org/10.1007/s00216-010-3576-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3576-0

Keywords

Navigation