Skip to main content
Log in

Analysis of hormone antagonists in clinical and municipal wastewater by isotopic dilution liquid chromatography tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A comprehensive method was developed for the simultaneous trace analysis of ten hormone antagonist pharmaceuticals (raloxifene, exemestane, letrozole, anastrozole, mifepristone, finastride, tamoxifen, N-desmethyltamoxifen, clomiphene, and toremifene) in municipal sewage and hospital wastewater samples. The target compounds were firstly extracted using an Oasis HLB cartridge, followed by purification by an aminopropyl cartridge, and were then analyzed by liquid chromatography electrospray ionization tandem mass spectrometry in positive ion mode. The recoveries for the analytes based on internal standard calibration in different test matrices ranged from 67.6 to 118.6% (with the exception of mifepristone in clinical wastewater samples), with relative standard deviations less than 20%. The method quantification limits of the ten pharmaceuticals were in the range 0.10–2.0 ng/L. Excluding exemestane and N-desmethyltamoxifen, eight drugs were detected at 0.20–195.0 ng/L in hospital wastewater and municipal wastewater samples from Beijing.

Analysis of hormone antagonists in clinical and municipal wastewater by liquid chromatography tandem mass spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Group Early Breast Cancer Trialists’ Collaborative (1992) Lancet 339:1–15

    Google Scholar 

  2. Fisher B, Constantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N (1998) J Natl Cancer Inst 90:1371–1388

    Article  CAS  Google Scholar 

  3. Mellon JK (2005) Eur J Cancer 41:2016–2022

    Article  CAS  Google Scholar 

  4. Narvekar N, Critchley HOD, Cheng L, Baird DT (2006) Hum Reprod 21:2312–2318

    Article  CAS  Google Scholar 

  5. van Leeuwen FE, Benraadt J, Coebergh JW, Kiemeney LA, Gimbrere CH, Otter R, Schouten LJ, Damhuis RA, Bontenbal M, Diepenhorst FW, van den Belt-Dusebout AW, van Tinteren H (1994) Lancet 343:448–452

    Article  Google Scholar 

  6. Albert C, Gilles K, Herbert SR (1996) Mutat Res 349:85–94

    Google Scholar 

  7. Rossing MA, Daling JR, Weiss NS, Self SG (1994) N Engl J Med 331:771–776

    Article  CAS  Google Scholar 

  8. White INH (2001) Toxicol Lett 120:21–29

    Article  CAS  Google Scholar 

  9. O’Regan RM, Cisneros A, England GM, MacGregor JI, Muenzner HD, Assikis VJ, Bilimoria MM, Piette M, Dragan YP, Pitot HC, Chatterton R, Jordan VC (1998) J Natl Cancer Inst 90:1552–1558

    Article  Google Scholar 

  10. León A, Teh SJ, Hall LC, Teh FC (2007) Aquat Toxicol 82:195–203

    Article  Google Scholar 

  11. Roberts PH, Thomas KV (2006) Sci Total Environ 356:143–153

    Article  CAS  Google Scholar 

  12. Tauxe-Wuersch A, De Alencastro LF, Grandjean D, Tarradellas J (2006) Int J Environ Anal Chem 86:473–485

    Article  CAS  Google Scholar 

  13. Li GL, Liu XC, Lin HR (2005) Acta Physiol Sin 57:473–479 (in Chinese with English abstract)

    CAS  Google Scholar 

  14. Fent K, Weston AA, Caminada D (2006) Aquat Toxicol 76:152–159

    Article  Google Scholar 

  15. Sun LW, Zha JM, Wang ZJ (2009) Aquat Toxicol 93:83–89

    Article  CAS  Google Scholar 

  16. Sun LW, Zha JM, Spear PA, Wang ZJ (2007) Environ Toxicol Pharmacol 24:23–29

    Article  Google Scholar 

  17. Sun LW, Zha JM, Spear PA, Wang ZJ (2007) Comp Biochem Physiol C 145:533–541

    Google Scholar 

  18. Zhang ZL, Zhou JL (2008) J Chromatogr A 1154:205–213

    Article  Google Scholar 

  19. Thomas KV (2004) Hilton MJ. Mar Pollut Bull 49:435–444

    Google Scholar 

  20. Hilton MJ, Thomas KV (2003) J Chromatogr A 1015:121–141

    Article  Google Scholar 

  21. Liu R, Zhou JL, Wilding A (2004) J Chromatogr A 1022:179–189

    Article  CAS  Google Scholar 

  22. Wang S, Huang W, Fang GZ, Zhang Y, Qiao H (2008) Int J Environ Anal Chem 88:1–25

    Article  CAS  Google Scholar 

  23. Chang H, Wu SM, Hu JY, Asami M, Kunikane S (2008) J Chromatogr A 1195:44–51

    Article  CAS  Google Scholar 

  24. Farre M, Kuster M, Brix R, Rubio F, de Alda MJL, Barceló D (2007) J Chromatogr A 1160:166–175

    Article  CAS  Google Scholar 

  25. Vulliet E, Wiest L, Baudot R, Grenier-Loustalot MFG (2008) J Chromatogr A 1210:84–91

    Article  CAS  Google Scholar 

  26. Richardson SD (2007) Anal Chem 79:4295–4324

    Article  CAS  Google Scholar 

  27. Richardson SD (2009) Anal Chem 81:4645–4677

    Article  CAS  Google Scholar 

  28. Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  29. Taylor PJ (2005) Clin Biochem 38:328–334

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge financial support from National Natural Science Foundation of China (20837003 and 20607004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Shao.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 561 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Zhang, J., Yin, J. et al. Analysis of hormone antagonists in clinical and municipal wastewater by isotopic dilution liquid chromatography tandem mass spectrometry. Anal Bioanal Chem 396, 2977–2985 (2010). https://doi.org/10.1007/s00216-010-3531-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3531-0

Keywords

Navigation