Skip to main content
Log in

Determination of 43 polycyclic aromatic hydrocarbons in air particulate matter by use of direct elution and isotope dilution gas chromatography/mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We are reporting a method for measuring 43 polycyclic aromatic hydrocarbons (PAH) and their methylated derivatives (Me-PAHs) in air particulate matter (PM) samples using isotope dilution gas chromatography/high-resolution mass spectrometry (GC/HRMS). In this method, PM samples were spiked with internal standards, loaded into solid phase extraction cartridges, and eluted by dichloromethane. The extracts were concentrated, spiked with a recovery standard, and analyzed by GC/HRMS at 10,000 resolution. Sixteen 13C-labeled PAHs and two deuterated Me-PAHs were used as internal standards to account for instrument variability and losses during sample preparation. Recovery of labeled internal standards was in the range of 86–115%. The proposed method is less time-consuming than commonly used extraction methods, such as sonication and accelerated solvent extraction (ASE), and it eliminates the need for a filtration step required after the sonication extraction method. Limits of detection ranged from 41 to 332 pg/sample for the 43 analytes. This method was used to analyze reference materials from the National Institute of Standards and Technology. The results were consistent with those from ASE and sonication extraction, and these results were also in good agreement with the certified or reference concentrations. The proposed method was then used to measure PAHs on PM2.5 samples collected at three sites (urban, suburban, and rural) in Atlanta, GA. The results showed distinct seasonal and spatial variation and were consistent with an earlier study measuring PM2.5 samples using an ASE method, further demonstrating the compatibility of this method and the commonly used ASE method.

A schematic illustration of the direct elution set up

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PM:

Particulate matter

PM2.5 :

Particulate matter with aerodynamic diameters less than 2.5 μm

PAH:

Polycyclic aromatic hydrocarbon

ASE:

Accelerated solvent extraction

GC/MS:

Gas chromatography/mass spectrometry

GC/HRMS:

Gas chromatography/high-resolution mass spectrometry

References

  1. Ostro B, Feng WY, Broadwin R, Green S, Lipsett M (2007) Environ Health Perspect 115:13–19

    Article  CAS  Google Scholar 

  2. Pope CA III, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, Godleski JJ (2004) Circulation 109:71–77

    Article  Google Scholar 

  3. ATSDR (1995) Toxicological profile for polycyclic aromatic hydrocarbons. Agency for Toxic Substances and Disease Registry, Atlanta http://www.atsdr.cdc.gov/toxprofiles/tp69.html Accessed 14 August 2009

    Google Scholar 

  4. IARC (1983) IARC monographs on the evaluation of carcinogenic risk of chemicals to man: polycyclic aromatic compounds. http://monographs.iarc.fr/ENG/Monographs/vol32/volume32.pdf Accessed 14 August 2009.

  5. Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R (2002) Environ Health Perspect 110(Suppl 3):451–488

    CAS  Google Scholar 

  6. Ramesh A, Walker SA, Hood DB, Guillen MD, Schneider K, Weyand EH (2004) Int J Toxicol 23:301–333

    Article  CAS  Google Scholar 

  7. U.S.EPA (1990) Clean air act, sec 112: Hazardous air pollutants

  8. Eiguren-Fernandez A, Miguel AH, Froines JR, Thurairatnam S, Avol EL (2004) Aerosol Sci Tech 38:447–455

    Article  CAS  Google Scholar 

  9. Re-Poppi N, Santiago-Silva M (2005) Atmos Environ 39:2839–2850

    Article  CAS  Google Scholar 

  10. Cancio JAL, Castellano AV, Martin SS, Rodriguez JFS (2004) Water Air Soil Pollut 154:127–138

    Article  Google Scholar 

  11. Duan JC, Bi XH, Tan JH, Sheng GY, Fu JM (2005) Atmos Res 78:190–203

    Article  CAS  Google Scholar 

  12. Ohura T, Amagai T, Sugiyama T, Fusaya M, Matsushita H (2004) Atmos Environ 38:2045–2054

    Article  CAS  Google Scholar 

  13. Bourotte C, Forti MC, Taniguchi S, Bicego MC, Lotufo PA (2005) Atmos Environ 39:3799–3811

    Article  CAS  Google Scholar 

  14. Sanderson EG, Raqbi A, Vyskocil A, Farant JP (2004) Atmos Environ 38:3417–3429

    Article  CAS  Google Scholar 

  15. Simo R, Grimalt JO, Albaiges J (1997) Environ Sci Technol 31:2697–2700

    Article  CAS  Google Scholar 

  16. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  17. Zakaria MP, Takada H, Tsutsumi S, Ohno K, Yamada J, Kouno E, Kumata H (2002) Environ Sci Technol 36:1907–1918

    Article  CAS  Google Scholar 

  18. Vondracek J, Svihalkova-Sindlerova L, Pencikova K, Marvanova S, Krcmar P, Ciganek M, Neca J, Trosko JE, Upham B, Kozubik A, Machala M (2007) Environ Toxicol Chem 26:2308–2316

    Article  CAS  Google Scholar 

  19. Ramdahl T (1983) Nature 306:580–583

    Article  CAS  Google Scholar 

  20. McDonald JD, Zielinska B, Fujita EM, Sagebiel JC, Chow JC, Watson JG (2000) Environ Sci Technol 34:2080–2091

    Article  CAS  Google Scholar 

  21. Villalobos-Pietrini R, Amador-Munoz O, Waliszewski S, Hernandez-Mena L, Munive-Colin Z, Gomez-Arroyo S, Bravo-Cabrera JL, Frias-Villegas A (2006) Atmos Environ 40:5845–5857

    Article  CAS  Google Scholar 

  22. Li Z, Sjodin A, Porter EN, Patterson DG Jr, Needham LL, Lee S, Russell AG, Mulholland JA (2009) Atmos Environ 43:1043–1050

    Article  CAS  Google Scholar 

  23. Lima ALC, Eglinton TI, Reddy CM (2003) Environ Sci Technol 37:53–61

    Article  CAS  Google Scholar 

  24. Li Z, Porter EN, Sjodin A, Needham LL, Lee S, Russell AG, Mulholland JA (2009) Atmos Environ 43:4187–4193

    Article  CAS  Google Scholar 

  25. U.S.EPA. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) In ambient air using Gas Chromatography/Mass Spectrometry (GC/MS). 1-11-1999. http://www.epa.gov/ttn/amtic/files/ambient/airtox/to-13arr.pdf Accessed 14 August 2009

  26. Christensen A, Ostman C, Westerholm R (2005) Analytical and Bioanalytical Chemistry 381:1206–1216

    Article  CAS  Google Scholar 

  27. U.S.EPA. Analysis of PCBs, pesticides, and PAHs in air and precipitation samples: sample preparation procedures. 3-1-1995. http://www.epa.gov/glnpo/lmmb/methods/samprep2.pdf Accessed 14 August 2009.

  28. Pino V, Ayala JH, Afonso AM, Gonzalez V (2000) J Chromatogr A 869:515–522

    Article  CAS  Google Scholar 

  29. Pleil JD, Vette AF, Rappaport SM (2004) J Chromatogr A 1033:9–17

    Article  CAS  Google Scholar 

  30. Chester TL, Pinkston JD, Raynie DE (1998) Anal Chem 70:301R–319R

    Article  CAS  Google Scholar 

  31. Lintelmann J, Fischer K, Karg E, Schroppel A (2005) Analytical and Bioanalytical Chemistry 381:508–519

    Article  CAS  Google Scholar 

  32. Burkhardt MR, Zaugg SD, Burbank TL, Olson MC, Iverson JL (2005) Anal Chim Acta 549:104–116

    Article  CAS  Google Scholar 

  33. Olivella MA (2005) Analytical and Bioanalytical Chemistry 383:107–114

    Article  CAS  Google Scholar 

  34. Berset JD, Holzer R (1999) J Chromatogr A 852:545–558

    Article  CAS  Google Scholar 

  35. Hollender J, Koch B, Lutermann C, Dott W (2003) Int J Environ Anal Chem 83:21–32

    Article  CAS  Google Scholar 

  36. Butler AJ, Andrew MS, Russell AG (2003) J Geophys Res 108:8415–8425

    Article  Google Scholar 

  37. Bence AE, Kvenvolden KA, Kennicutt MC (1996) Org Geochem 24:7–42

    Article  CAS  Google Scholar 

  38. Boden AR, Reiner EJ (2004) Polycycl Aromat Compd 24:309–323

    Article  CAS  Google Scholar 

  39. Ravindra K, Bencs L, Wauters E, de Hoog J, Deutsch F, Roekens E, Bleux N, Berghmans P, Van Grieken R (2006) Atmos Environ 40:771–785

    Article  CAS  Google Scholar 

  40. Prycek J, Ciganek M, Simek Z (2006) Int J Environ Anal Chem 86:313–324

    Article  CAS  Google Scholar 

  41. Bergvall C, Westerholm R (2008) Analytical and Bioanalytical Chemistry 391:2235–2248

    Article  CAS  Google Scholar 

  42. NIST (2005) NISTIR 7303: Intercomparison program for organic speciation in PM2.5 air particulate matter: description and results for trial III

  43. NIST (2009) Standard reference material 1649b: certificate of analysis. https://www-s.nist.gov/srmors/certificates/1649b.pdf Accessed 14 August 2009

  44. Ludykar D, Westerholm R, Almen J (1999) Sci Total Environ 235:65–69

    Article  CAS  Google Scholar 

  45. Tsapakis M, Stephanou EG (2005) Environ Pollut 133:147–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate Dr. Michelle Schantz for consulting on NIST reference materials. We also thank Dr. Sangil Lee for providing the ASACA PM2.5 samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Pittman, E.N., Trinidad, D.A. et al. Determination of 43 polycyclic aromatic hydrocarbons in air particulate matter by use of direct elution and isotope dilution gas chromatography/mass spectrometry. Anal Bioanal Chem 396, 1321–1330 (2010). https://doi.org/10.1007/s00216-009-3297-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3297-4

Keywords

Navigation