Skip to main content
Log in

Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Optical fibre bundles usually comprise a few thousand to tens of thousands of individually clad glass optical fibres. The ordered arrangement of the fibres enables coherent transmission of an image through the bundle and therefore enables analysis and viewing in remote locations. In fused bundles, this architecture has also been used to fabricate arrays of various micro to nano-scale surface structures (micro/nanowells, nanotips, triangles, etc.) over relatively large areas. These surface structures have been used to obtain new optical and analytical capabilities. Indeed, the imaging bundle can be thought of as a “starting material” that can be sculpted by a combination of fibre drawing and selective wet-chemical etching processes. A large variety of bioanalytical applications have thus been developed, ranging from nano-optics to DNA nanoarrays. For instance, nanostructured optical surfaces with intrinsic light-guiding properties have been exploited as surface-enhanced Raman scattering (SERS) platforms and as near-field probe arrays. They have also been productively associated with electrochemistry to fabricate arrays of transparent nanoelectrodes with electrochemiluminescent imaging properties. The confined geometry of the wells has been loaded with biosensing materials and used as femtolitre-sized vessels to detect single molecules. This review describes the fabrication of high-density nanostructured optical fibre arrays and summarizes the large range of optical and bioanalytical applications that have been developed, reflecting the versatility of this ordered light-guiding platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595–2626

    Article  CAS  Google Scholar 

  2. LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614–637

    Article  CAS  Google Scholar 

  3. Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Gen 21:20–24

    Article  CAS  Google Scholar 

  4. Matsuzaki H, Dong SL, Loi H, Di XJ, Liu GY, Hubbell E, Law J, Berntsen T, Chadha M, Hui H, Yang GR, Kennedy GC, Webster TA, Cawley S, Walsh PS, Jones KW, Fodor SPA, Mei R (2004) Genotyping over 100, 000 SNPs on a pair of oligonucleotide arrays. Nat Meth 1:109–111

    Article  CAS  Google Scholar 

  5. Singh-Gasson S, Green RD, Yue YJ, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol 17:974–978

    Article  CAS  Google Scholar 

  6. Monk DJ, Walt DR (2004) Optical fiber-based biosensors. Anal Bioanal Chem 379:931–945

    Article  CAS  Google Scholar 

  7. www.illumina.com

  8. www.quanterix.com

  9. Kapany NS (1959) High-resolution fibre optics using sub-micron multiple fibres. Nature 184:881–883

    Article  Google Scholar 

  10. Pantano P, Walt DR (1995) Analytical applications of optical imaging fibers. Anal Chem 67:481A–487A

    Article  CAS  Google Scholar 

  11. Knight JC (2003) Photonic crystal fibres. Nature 424:847–851

    Article  CAS  Google Scholar 

  12. Laegsgaard J, Bjarklev A (2006) Microstructured optical fibers - Fundamentals and applications. J Am Ceram Soc 89:2–12

    Article  CAS  Google Scholar 

  13. Dubaj V, Mazzolini A, Wood A, Harris M (2002) Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope. J Microsc-Oxf 207:108–117

    Article  CAS  Google Scholar 

  14. Flusberg BA, Cocker ED, Piyawattanametha W, Jung JC, Cheung ELM, Schnitzer MJ (2005) Fiber-optic fluorescence imaging. Nature Methods 2:941–950

    Article  CAS  Google Scholar 

  15. Kapany NS (1965) In: Patent US (ed) Method of making a fiber optical bundle. American Optical Company, United States

    Google Scholar 

  16. www.schott.com

  17. Ghaemi HF, Li Y, Thio T, Wang T (1998) Fiber image guide with subwavelength resolution. Appl Phys Lett 72:1137–1139

    Article  CAS  Google Scholar 

  18. Yoshimura K, Higashimoto T, Ono T (1983) Image-transmitting bundled optical fibers. In: Patent US (ed), Sumitomo Electric Industries Ltd

  19. Hayami H, Utsumi A (1991) In: Patent US (ed) Method of producing optical multiple fiber. Dainichi-Nippon Cables Ltd, United States

    Google Scholar 

  20. Utsumi A, Noguchi M (1984) In: Patent US (ed) Method for producing optical multiple fiber. Dainichi-Nippon Cables Ltd, United States

    Google Scholar 

  21. Phaneuf RA, Strack RR (1977) In: Patent US (ed) Optical fiber bundle image conduit. American Optical Corporation, United States

    Google Scholar 

  22. Biran I, Walt DR (2002) Optical imaging fiber-based single live cell arrays: A high-density cell assay platform. Anal Chem 74:3046–3054

    Article  CAS  Google Scholar 

  23. Mogi M, Yoshimura K (1989) Development of superhigh density packed image guide. Proc SPIE 1067:172–181

    Google Scholar 

  24. Siegmund WP (1961) Fibre optical image transfer device having a multiplicity of light absorbing elements. United States Patent 3(247):756

    Google Scholar 

  25. Maheswari RU, Mononobe SJ, Ohtsu M (1995) Control of apex shape of the fiber probe employed in photon scanning tunneling microscope by a multistep etching method. J Lightwave Technol 13:2308–2313

    Article  CAS  Google Scholar 

  26. Ohtsu M (1995) Progress of high-resolution photon scanning-tunneling-microscopy due to a nanometric fiber probe. J Lightwave Technol 13:1200–1221

    Article  CAS  Google Scholar 

  27. Huntington ST, Mulvaney P, Roberts A, Nugent KA, Bazylenko M (1997) Atomic force microscopy for the determination of refractive index profiles of optical fibers and waveguides: A quantitative study. J Appl Phys 82:2730–2734

    Article  CAS  Google Scholar 

  28. White DJ, Mazzolini AP, Stoddart PR (2007) Fabrication of a range of SERS substrates on nanostructured multicore optical fibres. J Raman Spectrosc 38:377–382

    Article  CAS  Google Scholar 

  29. Hopland S (1985) Characteristics of the etching of undoped silica in MCVD-fabricated optical fibers with buffered hydrofluoric acid. Mater Res Bulletin 20:1367–1372

    Article  CAS  Google Scholar 

  30. Buhler J, Steiner FP, Baltes H (1997) Silicon dioxide sacrificial layer etching in surface micromachining. J Micromech Microeng 7:R1–R13

    Article  Google Scholar 

  31. Williams KR, Muller RS (1996) Etch rates for micromachining processing. J Microelectromech Syst 5:256–269

    Article  CAS  Google Scholar 

  32. Kikyuama H, Miki N, Saka K, Takano JA, Kawanabe IA, Miyashita MA, Ohmi TA (1991) Principles of wet chemical processing in ULSI microfabrication. IEEE Trans Semicond Manuf 4:26–35

    Article  Google Scholar 

  33. Rudder RA, Thomas RE, Nemanich RJ (1993) Remote plasma processing for silicon wafer cleaning. In: Kern W (ed) Handbook of semiconductor wafer cleaning technology: science, technology and application. Noyes Publications, Park Ridge

    Google Scholar 

  34. Liu YH, Dam TH, Pantano P (2000) A pH-sensitive nanotip array imaging sensor. Anal Chim Acta 419:215–225

    Article  CAS  Google Scholar 

  35. Stjernstrom M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. J Micromech Microeng 8:33–38

    Article  CAS  Google Scholar 

  36. Chovin A, Garrigue P, Pecastaings G, Saadaoui H, Manek-Hönninger I, Sojic N (2006) Microarrays of near-field optical probes with adjustable dimensions. Ultramicroscopy 106:57–65

    Article  CAS  Google Scholar 

  37. Bernhard DD, Mall S, Pantano P (2001) Fabrication and characterization of microwell array chemical sensors. Anal Chem 73:2484–2490

    Article  CAS  Google Scholar 

  38. Pantano P, Walt DR (1996) Ordered nanowell arrays. Chem Mater 8:2832–2835

    Article  CAS  Google Scholar 

  39. White DJ, Stoddart PR (2005) Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Optics Lett 30:598–600

    Article  Google Scholar 

  40. White DJ, Mazzolini AP, Stoddart PR (2008) First-approximation simulation of dopant diffusion in nanostructured silica optical fibres. Photonics Nanostruct 6:167–177

    Article  Google Scholar 

  41. Lyytikainen K, Huntington ST, Carter ALG, McNamara P, Fleming S, Abramczyk J, Kaplin I, Schotz G (2004) Dopant diffusion during optical fibre drawing. Opt Express 12:972–977

    Article  CAS  Google Scholar 

  42. McNamara P, Lyytikamen KJ, Ryan T, Kaplin IJ, Ringer SP (2004) Germanium-rich, “starburst” cores in silica-based optical fibres fabricated by Modified Chemical Vapour Deposition. Opt Commun 230:45–53

    Article  CAS  Google Scholar 

  43. Ma ZY, Ma LY, Su M (2008) Engineering three-dimensional micromirror arrays by fiber-drawing nanomanufacturing for solar energy conversion. Adv Mater 20:3734–3738

    Article  CAS  Google Scholar 

  44. Amatore C, Chovin A, Garrigue P, Servant L, Sojic N, Szunerits S, Thouin L (2004) Remote fluorescence imaging of dynamic concentration profiles with micrometer resolution using a coherent optical fiber bundle. Anal Chem 76:7202–7210

    Article  CAS  Google Scholar 

  45. Dromard T, Lévêque J-L, Sojic N (2007) Remote in vivo imaging of fluorescein-stained corneocytes on human skin. Rev Sci Instrum 78:053709

    Article  CAS  Google Scholar 

  46. Flusberg BA, Jung JC, Cocker ED, Anderson EP, Schnitzer MJ (2005) In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt Lett 30:2272–2274

    Article  Google Scholar 

  47. Utzinger U, Richards-Kortum R (2003) Fiber optic probes for biomedical optical spectroscopy. J Biomed Opt 8:121–147

    Article  Google Scholar 

  48. www.maunakeatech.com

  49. Davenne M, Custody C, Charneau P, Lledo P-M (2005) In vivo imaging of migrating neurons in the mammalian forebrain. Chem Senses 30:i115–i116

    Article  Google Scholar 

  50. Laemmel E, Genet M, Le Goualher G, Perchant A, Le Gargasson J-F, Vicaut E (2004) Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. J Vasc Res 41:400–411

    Article  Google Scholar 

  51. Petry R, Schmitt M, Popp J (2003) Raman spectroscopy - A prospective tool in the Life Sciences. ChemPhysChem 4:14–30

    Article  CAS  Google Scholar 

  52. De Serio M, Zenobi R, Deckert V (2003) Looking at the nanoscale: scanning near-field optical microscopy. Trends Anal Chem 22

  53. Yeo B-S, Stadler J, Schmid T, Zenobi R, Zhang W (2009) Tip-enhanced Raman spectroscopy - Its status, challenges and future directions. Chem Phys Lett 472:1

    Article  CAS  Google Scholar 

  54. Chen S, Han L, Schülzgen A, Li H, Li L, Moloney JV, Peyghambarian N (2008) Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure. Opt Express 16:13016

    Article  CAS  Google Scholar 

  55. Chu HV, Liu Y, Huang Y, Zhao Y (2007) A high sensitive fiber SERS probe based on silver nanorod arrays. Opt Express 15:12230

    Article  CAS  Google Scholar 

  56. Dhawan A, Muth JF (2008) Engineering surface plasmon based fiber-optic sensors. Mater Sci Eng B 149:237

    Article  CAS  Google Scholar 

  57. Geßner R, Rösch P, Petry R, Schmitt M, Strehle MA, Kiefer W, Popp J (2004) The application of a SERS fiber probe for the investigation of sensitive biological samples. Analyst 129:1193–1199

    Article  CAS  Google Scholar 

  58. Lucotti A, Pesapane A, Zerbi G (2007) Use of a geometry optimized fiber-optic surface-enhanced Raman scattering sensor in trace detection. Appl Spectrosc 61:260

    Article  CAS  Google Scholar 

  59. Lucotti A, Zerbi G (2007) Fiber-optic SERS sensor with optimized geometry. Sens Actuators B 121:356

    Article  CAS  Google Scholar 

  60. Mullen KI, Carron KT (1991) Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes. Anal Chem 63:2196–2199

    Article  CAS  Google Scholar 

  61. Murphy T, Lucht S, Schmidt H, Kronfeldt H-D (2000) Surface-enhanced Raman scattering (SERS) system for continuous measurements of chemicals in sea-water. J Raman Spectrosc 31:943–948

    Article  CAS  Google Scholar 

  62. Polwart E, Keir RL, Davidson CM, Smith WE, Sadler DA (2000) Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles. Appl Spectrosc 54:522–527

    Article  CAS  Google Scholar 

  63. Stokes DL, Vo-Dinh T (2000) Development of an integrated single-fiber SERS sensor. Sens Actuators B 69:28

    Article  Google Scholar 

  64. Viets C, Hill W (2000) Fibre-optic SERS sensors. Internet J Vib Spectrosc 4:1–13

    Google Scholar 

  65. Viets C, Hill W (2001) Fibre-optic SERS sensors with angled tips. J Molecular Structure 565–566:515

    Article  Google Scholar 

  66. Viets C, Hill W (2001) Fibre-optic SERS sensors with conically etched tips. J Molecular Structure 563–564:163

    Article  Google Scholar 

  67. Zheng X, Guo D, Shao Y, Jia S, Xu S, Zhao B, Xu W, Corredor C, Lombardi JR (2008) Photochemical modification of an optical fiber tip with a silver nanoparticle film: A SERS chemical sensor. Langmuir 24:4394–4398

    Article  CAS  Google Scholar 

  68. Smythe EJ, Cubukcu E, Capasso F (2007) Optical properties of surface plasmon resonances of coupled metallic nanorods. Opt Express 15:7439

    Article  Google Scholar 

  69. Smythe EJ, Dickey MD, Bao J, Whitesides GM, Capasso F (2009) Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett 9:1132–1138

    Article  CAS  Google Scholar 

  70. Smythe EJ, Dickey MD, Whitesides GM, Capasso F (2009) A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. ACS Nano 3:59–65

    Article  CAS  Google Scholar 

  71. Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR (2009) Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing. Biosens Bioelectron 24:1531

    Article  CAS  Google Scholar 

  72. Guieu V, Lagugne-Labarthet F, Servant L, Talaga D, Sojic N (2008) Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging. Small 4:96–99

    Article  CAS  Google Scholar 

  73. Guieu V, Talaga D, Servant L, Sojic N, Lagugne-Labarthet F (2009) Multitip-localized enhanced Raman scattering from a nanostructured optical fiber array. J Phys Chem C 113:874–881

    Article  CAS  Google Scholar 

  74. Hankus ME, Li HG, Gibson GJ, Cullum BM (2006) Surface-enhanced Raman scattering-based nanoprobe for high-resolution, non-scanning chemical imaging. Anal Chem 78:7535–7546

    Article  CAS  Google Scholar 

  75. Sojic N, Lagugne-Labarthet F, Guieu V, Talaga D, Servant L (2008) Dispositif d’imagerie par spectroscopie Raman et son procede de fabrication. In: French Patent CNRS (ed)

  76. Zamuner M, Talaga D, Deiss F, Guieu V, Kuhn A, Ugo P, Sojic N (2009) Fabrication of a macroporous microwell array for surface-enhanced Raman scattering. Adv Funct Mat 19:3129–3135

    Article  CAS  Google Scholar 

  77. Pantano P, Walt DR (1997) Toward a near-field optical array. Rev Sci Instrum 68:1357–1359

    Article  CAS  Google Scholar 

  78. Tam JM, Song LN, Walt DR (2005) Fabrication and optical characterization of imaging fiber-based nanoarrays. Talanta 67:498–502

    Article  CAS  Google Scholar 

  79. White DJ, Mazzolini AP, Stoddart PR (2008) Nanostructured optical fibre for surface-enhanced Raman scattering sensing. Proc SPIE 7102:710202

    Article  CAS  Google Scholar 

  80. Cullum BM, Li H, Schiza MV, Hankus ME (2007) Characterization of multilayer-enhanced surface-enhanced Raman scattering (SERS) substrates and their potential for SERS nanoimaging. Nanobiotechnol 3:1–11

    Article  CAS  Google Scholar 

  81. Hankus ME, Gibson G, Chandrasekharan N, Cullum BM (2004) Surface-enhanced Raman scattering (SERS): nanoimaging probes for biological analysis. Proc SPIE 5588:106–116

    Article  CAS  Google Scholar 

  82. Reichenbach KL, Xu C (2007) Numerical analysis of light propagation in image fibers or coherent fiber bundles. Opt Exp 15:2151–2165

    Article  Google Scholar 

  83. Sumetsky M (2006) How thin can a microfiber be and still guide light? Opt Lett 31:870–872

    Article  CAS  Google Scholar 

  84. Guieu V, Lagugné-Labarthet F, Servant L, Sojic N, Talaga D (submitted)

  85. Gao L, Seliskar CJ, Heineman WR (1999) Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 4. Sensing with poly(vinyl alcohol)-polyelectrolyte blend modified optically transparent electrodes. Anal Chem 71:4061–4068

    Article  CAS  Google Scholar 

  86. Kaval N, Seliskar CJ, Heineman WR (2003) Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 16. Sensing by fluorescence. Anal Chem 75:6334–6340

    Article  CAS  Google Scholar 

  87. Shi Y, Slaterbeck AF, Seliskar CJ, Heineman WR (1997) Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 1. Demonstration of concept with ferricyanide. Anal Chem 69:3679–3686

    Article  CAS  Google Scholar 

  88. Shtoyko T, Maghasi AT, Richardson JN, Seliskar CJ, Heineman WR (2003) Spectroelectrochemical sensing based on attenuated total internal reflectance stripping voltammetry. 1. Determination of lead and cadmium. Anal Chem 75:4585–4590

    Article  CAS  Google Scholar 

  89. Woltman SJ, Even WR, Weber SG (1999) Chromatographic detection using Tris(2, 2′-bipyridyl)ruthenium(III) as a fluorogenic electron-transfer reagent. Anal Chem 71:1504–1512

    Article  CAS  Google Scholar 

  90. Zhan W, Alvarez J, Crooks RM (2003) A two-channel microfluidic sensor that uses anodic electrogenerated chemiluminescence as a photonic reporter of cathodic redox reactions. Anal Chem 75:313–318

    Article  CAS  Google Scholar 

  91. Jin ES, Norris BJ, Pantano P (2001) An electrogenerated chemiluminescence imaging fiber electrode chemical sensor for NADH. Electroanalysis 13:1287–1290

    Article  CAS  Google Scholar 

  92. Khan SS, Jin ES, Sojic N, Pantano P (2000) A fluorescence-based imaging fiber electrode chemical sensor for hydrogen peroxide. Anal Chim Acta 404:213–221

    Article  CAS  Google Scholar 

  93. Konry T, Novoa A, Cosnier S, Marks RS (2003) Development of an electroptode immunosensor: indium tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated cholera Toxin B subunit. Anal Chem 75:2633–2639

    Article  CAS  Google Scholar 

  94. Lee Y, Amemiya S, Bard AJ (2001) Scanning electrochemical microscopy. 41. Theory and characterization of ring electrodes. Anal Chem 73:2261–2267

    Article  CAS  Google Scholar 

  95. Lee Y, Bard AJ (2002) Fabrication and characterization of probes for combined scanning electrochemical/optical microscopy experiments. Anal Chem 74:3626–3633

    Article  CAS  Google Scholar 

  96. Szunerits S, Garrigue P, Bruneel J-L, Servant L, Sojic N (2003) Fabrication of a sub-micrometer electrode array: electrochemical characterization and mapping of an electroactive species by confocal Raman microspectroscopy. Electroanalysis 15:548–555

    Article  CAS  Google Scholar 

  97. Wang H, Xu G, Dong S (2002) Electrochemiluminescent microoptoprobe with mini-grid working electrode and self-contained sample container. Electrochem Commun 4:214–217

    CAS  Google Scholar 

  98. Bronk KS, Michael KL, Pantano P, Walt DR (1995) Combined imaging and chemical sensing using a single optical imaging fiber. Anal Chem 67:2750–2757

    Article  CAS  Google Scholar 

  99. Konry T, Heyman Y, Cosnier S, Gorgy K, Marks RS (2008) Characterization of thin poly(pyrrole-benzophenone) film morphologies electropolymerized on indium tin oxide coated optic fibers for electrochemical and optical biosensing. Electrochim Acta 53:5128

    Article  CAS  Google Scholar 

  100. Lewis BG, Paine DC (2000) Applications and processing of transparent conducting oxides. MRS Bull 25:22–27

    CAS  Google Scholar 

  101. Wu W-F, Chiou B-S (1994) Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing. Thin Solid Films 247:201–207

    Article  CAS  Google Scholar 

  102. Popovich ND, Wong S-S, Yen BKH, Yeom H-Y, Paine DC (2002) Influence of microstructure on the electrochemical performance of tin-doped indium oxide film electrodes. Anal Chem 74:3127–3133

    Article  CAS  Google Scholar 

  103. Konry T, Marks RS (2005) Physico-chemical studies of indium tin oxide-coated fiber optic biosensors. Thin Solid Films 492:313

    Article  CAS  Google Scholar 

  104. Marks RS, Novoa A, Konry T, Krais R, Cosnier S (2002) Indium tin oxide-coated optical fiber tips for affinity electropolymerization. Mat Sci Eng C 21:189–194

    Article  Google Scholar 

  105. Marks RS, Novoa A, Thomassey D, Cosnier S (2002) An innovative strategy for immobilization of receptor proteins on to an optical fiber by use of poly(pyrrole-biotin). Anal Bioanal Chem 374:1056–1063

    Article  CAS  Google Scholar 

  106. Atias D, Abu-Rabeah K, Herrmann S, Frenkel J, Tavor D, Cosnier S, Marks RS (2009) Poly(methyl methacrylate) conductive fiber optic transducers as dual biosensor platforms. Biosens Bioelectron 24:3683–3687

    Article  CAS  Google Scholar 

  107. Konry T, Novoa A, Shemer-Avni Y, Hanuka N, Cosnier S, Lepellec A, Marks RS (2005) Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen. Anal Chem 77:1771–1779

    Article  CAS  Google Scholar 

  108. Konry T, Hadad B, Shemer-Avni Y, Cosnier S, Marks RS (2008) ITO pattern fabrication of glass platforms for electropolymerization of light sensitive polymer for its conjugation to bioreceptors on a micro-array. Talanta 75:564

    Article  CAS  Google Scholar 

  109. Konry T, Bouhifd M, Cosnier S, Whelan M, Valsesia A, Rossi F, Marks RS (2007) Electrogenerated indium tin oxide-coated glass surface with photosensitive interfaces: Surface analysis. Biosens Bioelectron 22:2230

    Article  CAS  Google Scholar 

  110. Pennarun GI, Boxall C, O’Hare D (1996) Micro-optical ring electrode: development of a novel electrode for photoelectrochemistry. Analyst 121:1779–1788

    Article  CAS  Google Scholar 

  111. Smith PJS, Haydon PG, Hengstenberg A, Jung S-K (2001) Analysis of cellular boundary layers: application of electrochemical microsensors. Electrochim Acta 47:283–292

    Article  CAS  Google Scholar 

  112. Lee Y, Ding Z, Bard AJ (2002) Combined scanning electrochemical/optical microscopy with shear force and current feedback. Anal Chem 74:3634–3643

    Article  CAS  Google Scholar 

  113. Maruyama K, Ohkawa H, Ogawa S, Ueda A, Niwa O, Suzuki K (2006) Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy. Anal Chem 78:1904–1912

    Article  CAS  Google Scholar 

  114. Takahashi Y, Hirano Y, Yasukawa T, Shiku H, Yamada H, Matsue T (2006) Topographic, electrochemical, and optical images captured using standing approach mode scanning electrochemical/optical microscopy. Langmuir 22:10299–10306

    Article  CAS  Google Scholar 

  115. Szunerits S, Walt DR (2002) Fabrication of an optoelectrochemical microring array. Anal Chem 74:1718–1723

    Article  CAS  Google Scholar 

  116. Szunerits S, Walt DR (2003) The use of optical fiber bundles combined with electrochemistry for chemical imaging. ChemPhysChem 4:186–192

    Article  CAS  Google Scholar 

  117. Szunerits S, Tam JM, Thouin L, Amatore C, Walt DR (2003) Spatially resolved electrochemiluminescence on an array of electrode tips. Anal Chem 75:4382–4388

    Article  CAS  Google Scholar 

  118. Maus RG, Wightman RM (2001) Microscopic imaging with electrogenerated chemiluminescence. Anal Chem 73:3993–3998

    Article  CAS  Google Scholar 

  119. Zu Y, Ding Z, Zhou J, Lee Y, Bard AJ (2001) Scanning optical microscopy with an electrogenerated chemiluminescent light source at a nanometer tip. Anal Chem 73:2153–2156

    Article  CAS  Google Scholar 

  120. Chovin A, Garrigue P, Vinatier P, Sojic N (2004) Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging. Anal Chem 76:357–364

    Article  CAS  Google Scholar 

  121. Chovin A, Garrigue P, Sojic N (2004) Electrochemiluminescent detection of hydrogen peroxide with an imaging sensor array. Electrochim Acta 49:3751–3757

    Article  CAS  Google Scholar 

  122. Deiss F, LaFratta CN, Symer M, Blicharz TM, Sojic N, Walt DR (2009) Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J Am Chem Soc 131:6088–6089

    Article  CAS  Google Scholar 

  123. Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: Recommended definitions and classification. Pure Appl Chem 71:2333–2348

    Article  CAS  Google Scholar 

  124. Marazuela MD, Moreno-Bondi MC (2002) Fiber-optic biosensors - an overview. Anal Bioanal Chem 372:664–682

    Article  CAS  Google Scholar 

  125. Potyrailo RA, Hobbs SE, Hieftje GM (1998) Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development. Fresenius’ J Anal Chem 362:349–373

    Article  CAS  Google Scholar 

  126. Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal Chem 78:3859–3874

    Article  CAS  Google Scholar 

  127. Ferguson JA, Christian Boles T, Adams CP, Walt DR (1996) A fiber-optic DNA biosensor microarray for the analysis of gene expression. Nat Biotechnol 14:1681–1684

    Article  CAS  Google Scholar 

  128. Steemers FJ, Walt DR (1999) Multi-analyte sensing: From site-selective deposition to randomly-ordered addressable optical fiber sensors. Mikrochim Acta 131:99–105

    CAS  Google Scholar 

  129. Meek CC, Pantano P (2001) Spatial confinement of avidin domains in microwell arrays. Lab Chip 1:158–163

    Article  CAS  Google Scholar 

  130. Pantano P, Meek CC, Wang J, Coutinho DH, Balkus KJ (2003) Optical encoding with shaped DAM-1 molecular sieve particles. Lab Chip 3:132–135

    Article  CAS  Google Scholar 

  131. Ferguson JA, Steemers FJ, Walt DR (2000) High-density fiber-optic DNA random microsphere array. Anal Chem 72:5618–5624

    Article  CAS  Google Scholar 

  132. Bowden M, Song LN, Walt DR (2005) Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection. Anal Chem 77:5583–5588

    Article  CAS  Google Scholar 

  133. Shepard JRE, Danin-Poleg Y, Kashi Y, Walt DR (2005) Array-based binary analysis for bacterial typing. Anal Chem 77:319–326

    Article  CAS  Google Scholar 

  134. Song LN, Ahn S, Walt DR (2006) Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection. Anal Chem 78:1023–1033

    Article  CAS  Google Scholar 

  135. Steemers FJ, Ferguson JA, Walt DR (2000) Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat Biotechnol 18:91–94

    Article  CAS  Google Scholar 

  136. Ahn S, Walt DR (2005) Detection of Salmonella spp. using microsphere-based, fiber-optic DNA microarrays. Anal Chem 77:5041–5047

    Article  CAS  Google Scholar 

  137. Ahn S, Kulis DM, Erdner DL, Anderson DM, Walt DR (2006) Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species. Appl Environ Microbiol 72:5742–5749

    Article  CAS  Google Scholar 

  138. Epstein JR, Ferguson JA, Lee KH, Walt DR (2003) Combinatorial decoding: An approach for universal DNA array fabrication. J Am Chem Soc 125:13753–13759

    Article  CAS  Google Scholar 

  139. Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, Zhao CF, Che DP, Dickinson T, Wickham E, Bierle J, Doucet D, Milewski M, Yang R, Siegmund C, Haas J, Zhou LX, Oliphant A, Fan JB, Barnard S, Chee MS (2004) Decoding randomly ordered DNA arrays. Gen Res 14:870–877

    Article  CAS  Google Scholar 

  140. Kuhn K, Baker SC, Chudin E, Lieu MH, Oeser S, Bennett H, Rigault P, Barker D, McDaniel TK, Chee MS (2004) A novel, high-performance random array platform for quantitative gene expression profiling. Gen Res 14:2347–2356

    Article  CAS  Google Scholar 

  141. Fan JB, Yeakley JM, Bibikova M, Chudin E, Wickham E, Chen J, Doucet D, Rigault P, Zhang BH, Shen R, McBride C, Li HR, Fu XD, Oliphant A, Barker DL, Chee MS (2004) A versatile assay for high-throughput gene expression profiling on universal array matrices. Gen Res 14:878–885

    Article  CAS  Google Scholar 

  142. Eberle MA, Ng PC, Kuhn K, Zhou L, Peiffer DA, Galver L, Viaud-Martinez KA, Lawley CT, Gunderson KL, Shen R, Murray SS (2007) Power to detect risk Alleles using genome-wide tag SNP panels. PLoS Genet 3:1827–1837

    Article  CAS  Google Scholar 

  143. Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2:41–49

    Article  CAS  Google Scholar 

  144. Tam JM, Song L, Walt DR (2009) DNA detection on ultrahigh-density optical fiber-based nanoarrays. Biosens Bioelectron 24:2488–2493

    Article  CAS  Google Scholar 

  145. Szurdoki F, Michael KL, Walt DR (2001) A duplexed microsphere-based fluorescent immunoassay. Anal Biochem 291:219–228

    Article  CAS  Google Scholar 

  146. Lee M, Walt DR (2000) A fiber-optic microarray biosensor using aptamers as receptors. Anal Biochem 282:142–146

    Article  CAS  Google Scholar 

  147. Adams EW, Ueberfeld J, Ratner DM, O’Keefe BR, Walt DR, Seeberger PH (2003) Encoded fiber-optic microsphere arrays for probing protein-carbohydrate interactions. Angew Chem Int Ed 42:5317–5320

    Article  CAS  Google Scholar 

  148. Rissin DM, Walt DR (2006) Duplexed sandwich immunoassays on a fiber-optic microarray. Anal Chim Acta 564:34–39

    Article  CAS  Google Scholar 

  149. Rissin DM, Walt DR (2006) Digital readout of target binding with attomole detection limits via enzyme amplification in femtoliter arrays. J Am Chem Soc 128:6286–6287

    Article  CAS  Google Scholar 

  150. Rissin DM, Walt DR (2006) Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics. Nano Lett 6:520–523

    Article  CAS  Google Scholar 

  151. Kuang Y, Biran I, Walt DR (2004) Living bacterial cell array for genotoxin monitoring. Anal Chem 76:2902

    Article  CAS  Google Scholar 

  152. Dunn RC (1999) Near-field scanning optical microscopy. Chem Rev 99:2891–2927

    Article  CAS  Google Scholar 

  153. Sánchez EJ, Novotny L, Xie XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82:4014–4017

    Article  Google Scholar 

  154. Zenhausern F, O’Boyle MP, Wickramasinghe HK (1994) Apertureless near-field optical microscope. Appl Phys Lett 65:1623–1625

    Article  CAS  Google Scholar 

  155. Adelmann C, Hetzler J, Scheiber G, Schimmel T, Wegener M, Weber HB (1999) and H.v. Löhneysen, Experiments on the depolarization near-field scanning optical microscope. Appl Phys Lett 74:179

    Article  CAS  Google Scholar 

  156. Atia WA, Pilevear S, Güngör A, Davis CC (1998) On the spatial resolution of uncoated optical-fiber probes in internal reflection near-field scanning optical microscopy. Ultramicroscopy 71:379–382

    Article  CAS  Google Scholar 

  157. Bozhevolnyi S, Vohnsen B (1997) Near-field optics with uncoated fiber tips: light confinement and spatial resolution. J Opt Soc Am B 14:1656

    Article  CAS  Google Scholar 

  158. Müller R, Lienau C (2000) Propagation of femtosecond optical pulses through uncoated and metal-coated near-field fiber probes. Appl Phys Lett 76:3367

    Article  Google Scholar 

  159. Ohstu M, Photon STM (1995) from imaging to fabrication. Optoelectronics 10:147–166

    Google Scholar 

  160. Dam TH, Pantano P (1999) Nanotip array photoimprint lithography. Rev Sci Instrum 70:3982–3986

    Article  CAS  Google Scholar 

  161. Chovin A, Garrigue P, Manek-Hönninger I, Sojic N (2004) Fabrication, characterization and far-field optical properties of an ordered array of nanoapertures. Nano Lett 4:1965–1968

    Article  CAS  Google Scholar 

  162. Chovin A, Garrigue P, Servant L, Sojic N (2004) Electrochemical modulation of remote fluorescence imaging at an ordered opto-electrochemical nanoaperture array. ChemPhysChem 5:1125–1132

    Article  CAS  Google Scholar 

  163. Chovin A, Garrigue P, Sojic N (2006) Remote NADH imaging through an ordered array of electrochemiluminescent nanoapertures. Bioelectrochemistry 69:25–33

    Article  CAS  Google Scholar 

  164. Craig DB, Arriaga EA, Wong JCY, Lu H, Dovichi NJ (1996) Studies on single alkaline phosphatase molecules: Reaction rate and activation energy of a reaction catalyzed by a single molecule and the effect of thermal denaturation — The death of an enzyme. J Am Chem Soc 118:5245–5253

    Article  CAS  Google Scholar 

  165. Foquet M, Korlach J, Zipfel WR, Webb WW, Craighead HG (2004) Focal volume confinement by submicrometer-sized fluidic channels. Anal Chem 76:1618–1626

    Article  CAS  Google Scholar 

  166. Min W, English BP, Luo G, Cherayil BJ, Kou SC, Xie XS (2005) Fluctuating enzymes: Lessons from single-molecule studies. Acc Chem Res 38:923–931

    Article  CAS  Google Scholar 

  167. Xue Q, Yeung ES (1995) Differences in the chemical reactivity of individual molecules of an enzyme. Nature 373:681–683

    Article  CAS  Google Scholar 

  168. Rondelez Y, Tresset G, Tabata KV, Arata H, Fujita H, Takeuchi S, Noji H (2005) Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nature Biotechnol 23:361–365

    Article  CAS  Google Scholar 

  169. Gorris HH, Rissin DM, Walt DR (2007) Stochastic inhibitor release and binding from single-enzyme molecules. PNAS 104:17680–17685

    Article  CAS  Google Scholar 

  170. Rissin DM, Gorris HH, Walt DR (2008) Distinct and long-lived activity states of single enzyme molecules. J Am Chem Soc 130:5349–5353

    Article  CAS  Google Scholar 

  171. Li Z, Hayman RB, Walt DR (2008) Detection of single-molecule DNA hybridization using enzymatic amplification in an array of femtoliter-sized reaction vessels. J Am Chem Soc 130:12622–12623

    Article  CAS  Google Scholar 

  172. Gorris HH, Walt DR (2009) Mechanistic aspects of horseradish peroxidase elucidated through single-molecule studies. J Am Chem Soc 131:6277–6282

    Article  CAS  Google Scholar 

  173. Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nature Meth 4:915–918

    Article  CAS  Google Scholar 

  174. Bates M, Huang B, Dempsey GT, Zhuang XW (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    Article  CAS  Google Scholar 

  175. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem 1:18–52

    Article  CAS  Google Scholar 

  176. Salaita K, Wang YH, Fragala J, Vega RA, Liu C, Mirkin CA (2006) Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew Chem Int Ed 45:7220–7223

    Article  CAS  Google Scholar 

  177. Huo FW, Zheng ZJ, Zheng GF, Giam LR, Zhang H, Mirkin CA (2008) Polymer pen lithography. Science 321:1658–1660

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NS and FD thank the Agence Nationale pour la Recherche (Programme en Nanosciences et Nanotechnologies ANR-05-NANO-048), the CNRS and the Région Aquitaine for financial support. The contribution of PRS and DJW to this work was supported by the National Health and Medical Research Council through Development Grant 448610.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Sojic or P. R. Stoddart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deiss, F., Sojic, N., White, D.J. et al. Nanostructured optical fibre arrays for high-density biochemical sensing and remote imaging. Anal Bioanal Chem 396, 53–71 (2010). https://doi.org/10.1007/s00216-009-3211-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3211-0

Keywords

Navigation