Skip to main content
Log in

Measuring the optical chirality of molecular aggregates at liquid–liquid interfaces

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Some new experimental methods for measuring the optical chirality of molecular aggregates formed at liquid–liquid interfaces have been reviewed. Chirality measurements of interfacial aggregates are highly important not only in analytical spectroscopy but also in biochemistry and surface nanochemistry. Among these methods, a centrifugal liquid membrane method was shown to be a highly versatile method for measuring the optical chirality of the liquid–liquid interface when used in combination with a commercially available circular dichroism (CD) spectropolarimeter, provided that the interfacial aggregate exhibited a large molar absorptivity. Therefore, porphyrin and phthalocyanine were used as chromophoric probes of the chirality of itself or guest molecules at the interface. A microscopic CD method was also demonstrated for the measurement of a small region of a film or a sheet sample. In addition, second-harmonic generation and Raman scattering methods were reviewed as promising methods for detecting interfacial optical molecules and measuring bond distortions of chiral molecules, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Scheme 3
Fig. 8
Scheme 4
Fig. 9
Scheme 5
Fig. 10
Scheme 6
Fig. 11
Fig. 12
Fig. 13
Scheme 7
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Imae T (ed)(2007) Advanced chemistry of monolayers at interfaces, 14. Elsevier, Amsterdam, pp 277–308

  2. Ohashi A, Tsukahara S, Watarai H (2003) Langmuir 19:4645–4651

    Article  CAS  Google Scholar 

  3. Watarai H, Oyama H (2008) Anal Chem 80:8348–8353

    Article  CAS  Google Scholar 

  4. Watarai H, Teramae N, Sawada T (eds)(2005) Interfacial nanochemistry. Kluwer/Plenum, New York

  5. Wada S, Fujiwara K, Monjushiro H, Watarai H (2004) Anal Sci 20:1489–1491

    Article  CAS  Google Scholar 

  6. Kobayashi S, Hamada T, Manabe K (2002) J Am Chem Soc 124:5640–5641

    Article  CAS  Google Scholar 

  7. Wagnière GH (2007) On chirality and the universal asymmetry. Wiley-VCH/Helvetica Chimica Acta, Zürich

  8. Nagatani H, Watarai H (1999) Chem Lett 28:701–702

    Google Scholar 

  9. Ohashi A, Watarai H (2003) Chem Lett 32:218–219

    Article  CAS  Google Scholar 

  10. Hicks JM, Petralli-Mallow T, Byers JD (1994) Faraday Discuss 99:341

  11. Corn RM, Higgins DA (1994) Chem Rev 94:107

    Article  CAS  Google Scholar 

  12. Brevet P-F (1997) Surface second harmonic generation. Presses Polytechniques et Universitaries Romandes, Lausanne

    Google Scholar 

  13. Steel WH, Walker RA (2003) J Am Chem Soc 125:1132

    Article  CAS  Google Scholar 

  14. Nagatani H, Samec Z, Brevet P-F, Fermin DJ, Girault HH (2003) J Phys Chem B 107:786

    Article  CAS  Google Scholar 

  15. Verbiest T, Kauranen M, Persoons A (1999) J Mater Chem 9:2005

    Article  CAS  Google Scholar 

  16. Crawford MJ, Haslam S, Probert JM, Gruzdkov YA, Frey JG (1994) Chem Phys Lett 229:260

    Google Scholar 

  17. Wampler RD, Zhou M, Thompson DH, Simpson GJ (2006) J Am Chem Soc 128:10994–10995

    Article  CAS  Google Scholar 

  18. Fujiwara K, Monjushiro H, Watarai H (2004) Chem Phys Lett 94:349–353

    Article  Google Scholar 

  19. Tokunaga D, Takechi H, Yin J-H, Watarai H, Ohde T (2009) Anal Sci 25:311–314

    Article  CAS  Google Scholar 

  20. Matsugaki A, Takechi H, Monjushiro H, Watarai H (2008) Anal Sci 24:297–300

    Article  CAS  Google Scholar 

  21. Barron LD, Bogaard MP, Buckingham AD (1973) J Am Chem Soc 95:603

    Article  CAS  Google Scholar 

  22. Barron LD, Bogaard MP, Buckingham AD (1973) Nature 241:113

    Article  CAS  Google Scholar 

  23. Holzwarth G, Hsu EC, Mosher HS, Faulkner TR, Moskowitz A (1974) J Am Chem Soc 96:251

    Article  CAS  Google Scholar 

  24. Nafie LA, Cheng JC, Stephens PJ (1975) J Am Chem Soc 97:3842

    Article  CAS  Google Scholar 

  25. Hug W, Kint S, Bailey GF, Scherer JR (1975) J Am Chem Soc 97:5589

    Article  CAS  Google Scholar 

  26. Atkins PW, Barron LD (1969) Mol Phys 16:453

    Article  CAS  Google Scholar 

  27. Blum L, Frisch HL (1970) J Chem Phys 52:4379

    Article  CAS  Google Scholar 

  28. Barron LD, Buckingham AD (1971) Mol Phys 20:1111

    Article  CAS  Google Scholar 

  29. Hug W, Hangartner GJ (1999) Raman Spectrosc 30:841

    Article  CAS  Google Scholar 

  30. Hug W (2003) Appl Spectrosc 57:1

    Article  CAS  Google Scholar 

  31. Kasha M, Rawls HR, El-Bayoumi MA (1965) Pure Appl Chem 11:371–392

    Google Scholar 

  32. Harada N, Nakanishi K (1983) Circular dichroic spectroscopy–exciton coupling in organic chemistry. Oxford University Press, Oxford

  33. Kobayashi T (ed)(1996) J-aggregates. World Scientific, Singapore

  34. Krois D, Brinker UH (1998) J Am Chem Soc 120:11627–11632

    Google Scholar 

  35. Grabner G, Monti S, Marconi G, Mayer B, Klein C, Köhler G (1996) J Phys Chem 100:20068–20075

    Google Scholar 

  36. Murphy RS, Barros TC, Mayer B, Marconi G, Bohne C (2000) Langmuir 16:8780–8788

    Google Scholar 

  37. Mayer B, Zhang X, Nau WM, Marconi G (2001) J Am Chem Soc 123:5240–5248

    Google Scholar 

  38. Bakirci H, Zhang X, Nau WM (2005) J Org Chem 70:39–46

    Google Scholar 

  39. Tinoco I Jr (1962) Advan Chem Phys 4:113–160

    Google Scholar 

  40. Kirkwood JG (1937) J Chem Phys 5:479–491

    Google Scholar 

  41. Wada S, Fujiwara K, Monjushiro H, Watarai H (2007) J Phys Condens Matter 19:375105

    Google Scholar 

  42. Ribo JM, Crusats J, Sagues F, Claret J, Rubires R (2001) Science 292:2063

    Google Scholar 

  43. Adachi K, Chayama K, Watarai H (2006) Langmuir 22:1630–1639

    Google Scholar 

  44. Leznoff CC, Lever ABP (eds)(1989–1996) Phthalocyanines: properties and applications, vols 1–4. VCH, New York

  45. Okura I (2000) Photosensitization of porphyrins and phthalocyanines. Gordon and Breach, Amsterdam

  46. Engelkamp H, Middelbeek S, Nolte RJM (1999) Science 284:785–788

    Google Scholar 

  47. Samorí P, Engelkamp H, de Witte P, Rowan AE, Nolte RJM, Rabe JP (2001) Angew Chem Int Ed 40:2348–2350

    Google Scholar 

  48. Adachi K, Watarai H (2006) New J Chem 30:343–348

    Google Scholar 

  49. Adachi K, Watarai H (2004) Bull Chem Soc Jpn 77:2011–2020

    Google Scholar 

  50. Adachi K, Watarai H (2005) J Mater Chem 15:4701–4710

    Google Scholar 

  51. Adachi K, Chayama K, Watarai H (2005) Soft Mater 1:292–302

    Google Scholar 

  52. Ho T-L (1977) Hard and soft acids and bases: principles in organic chemistry. Academic, New York

  53. Baguley ME, France H, Linstead RP, Whalley M (1955) J Chem Soc 3521–3525

  54. Adachi K, Chayama K, Watarai H (2006) Chirality 18:599–608

    Google Scholar 

  55. Adachi K, Watarai H (2006) Eur Chem J 12:4249–4260

    Google Scholar 

  56. Bender ML, Komiyama M (1978) Cyclodextrin chemistry: reactivity and structure, concepts in organic chemistry. Springer, New York

  57. Szejtli J (1988) Cyclodextrin technology (Topics in Inclusion Science). Kluwer, Dordrecht

  58. de la Torre G, Vázquez P, Agulló-López F, Torres T (2004) Chem Rev 104:3723–3750

    Google Scholar 

  59. Martín G, Rojo G, Agulló-López F, Ferro VR, Vega JMG, Martínez-Díaz MV, Torres T, Ledoux I, Zyss J (2002) J Phys Chem B 106:13139–13145

    Google Scholar 

  60. Adachi K, Watarai H (2006) Anal Chem 78:6540–6846

    Google Scholar 

  61. Kratochwal NA, Huber W, Müller F, Kansy M, Gerber PR (2002) Biochem Pharmacol 64:1355–1374 (and references therein)

    Google Scholar 

  62. Kragh-Hansen U, Minchiotti L, Brennan SO, Sugita O (1990) Eur J Biochem 193:169–174

    Google Scholar 

  63. Watanabe S, Sato T (1996) Biochim Biophys Acta 1289:385–396

    Google Scholar 

  64. Peters T Jr (1995) All about albumin: biochemistry, genetics and medical applications. Academic, San Diego

  65. Yamasaki K, Maruyama T, Takadate A, Suenaga A, Kragh-Hansen U, Otagiri M (2004) J Pharm Sci 93:3004–3012

    Google Scholar 

  66. Takamura N, Haruta A, Kodama H, Tsuruoka M, Yamasaki KT, Suenaga A, Otagiri M (1996) Pharm Res 13:1015–1019

    Google Scholar 

  67. Spector AA, Santos EC, Ashbrook JD, Fletcher JE (1973) Ann NY Acad Sci 226:247–258

    Google Scholar 

  68. Nerli B, Romanini D, Pico G (1997) Chem Biol Interact 104:179–202

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by a Grant-in-Aid for Scientific Research (S) (No. 16105002) and was also supported in part by the Global COE program of Osaka University and the “Yuragi project” of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Watarai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watarai, H., Adachi, K. Measuring the optical chirality of molecular aggregates at liquid–liquid interfaces. Anal Bioanal Chem 395, 1033–1046 (2009). https://doi.org/10.1007/s00216-009-3012-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3012-5

Keywords

Navigation