Skip to main content
Log in

Hybrid gravitational field-flow fractionation using immunofunctionalized walls for integrated bioanalytical devices

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, the biospecific recognition antigen–antibody reaction was implemented in gravitational field-flow fractionation (GrFFF), a flow-assisted separation technique for micron-sized particles, in order to realize a hybrid immunomodulated GrFFF system in which two different principles are combined to achieve highly versatile fractionation. Micron-sized polystyrene beads coated with horseradish peroxidase (HRP) were used as a model sample, and anti-HRP antibodies were immobilized on the accumulation wall of the GrFFF channel. Ultrasensitive chemiluminescence imaging was employed to visualize the beads during elution and to optimize experimental conditions. The same principle was then applied to real biological samples composed by Yersinia enterocolitica and Escherichia coli cells. Results show the possibility to modify the elution of selected sample components and even to retain them into the channel. The hybrid immunomodulated GrFFF system is a step towards the development of a module that could be integrated in a lab-on-a-chip-based point-of-care testing device which includes sample pre-analytical cleanup and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reschiglian P, Zattoni A, Roda B, Michelini E, Roda A (2005) Trends Biotech 23:475–483

    Article  CAS  Google Scholar 

  2. Giddings JC (1993) Science 260:1456–1465

    Article  CAS  Google Scholar 

  3. Schimpf ME (2000) In: Caldwell KD, Giddings JC (eds) Field-flow fractionation handbook. Wiley Interscience, New York

    Google Scholar 

  4. Ratanathanawongs-Williams SK (2000) In: Shimpf ME, Caldwell KC, Giddings JC (eds) Field-flow fractionation handbook, chap 17. Wiley-Interscience, New York

    Google Scholar 

  5. Lucas A, Lepage F, Cardot PJP (2000) In: Shimpf ME, Caldwell KC, Giddings JC (eds) Field-flow fractionation handbook, chap 29. Wiley-Interscience, New York

    Google Scholar 

  6. Bernard A, Bories C, Loiseau PM, Cardot PJP (1995) J Chromatogr B 664:444–448

    Article  CAS  Google Scholar 

  7. Bernard A, Paulet B, Colin V, Cardot PJP (1995) Trends Anal Chem 14:266–273

    CAS  Google Scholar 

  8. Urbankova E, Vacek A, Chmelík J (1996) J Chromatogr B 687:449–452

    Article  CAS  Google Scholar 

  9. Merino-Dugay A, Cardot PJ, Czok M, Guernet M, Andreux JP (1992) J Chromatogr 579:73

    Article  CAS  Google Scholar 

  10. Tong X, Caldwell KD (1995) J Chromatogr B 674:39

    Article  CAS  Google Scholar 

  11. Merino A, Bories C, Gantier JC, Cardot PJ (1991) J Chromatogr 572:291

    Article  CAS  Google Scholar 

  12. Reschiglian P, Zattoni A, Roda B, Casolari S, Moon MH, Lee J, Jung J, Rodmalm K, Cenacchi G (2002) Anal Chem 74:4895–4904

    Article  CAS  Google Scholar 

  13. Sanz R, Puignou L, Reschiglian P, Galceran MT (2001) J Chromatogr A 919:339

    Article  CAS  Google Scholar 

  14. Puignou Garcia L, Sanz Jurado R, Galceran Huguet MT (2005) Method and apparatus for determining cell viability. PCT/ES2004/000492

  15. Roda B, Reschiglian P, Zattoni A, Tazzari PL, Buzzi M, Ricci F, Bontandini A (2008) Anal Bioanal Chem 392:137–145

    Article  CAS  Google Scholar 

  16. Magliulo M, Roda B, Zattoni A, Michelini E, Luciani M, Lelli R, Reschiglian P, Roda A (2006) Clin Chem 52:2151–2155

    Article  CAS  Google Scholar 

  17. Sautter RL, Lipford EH (2007) N C Med J 68(2):132–135

    Google Scholar 

  18. Bigelow JC, Giddings JC, Nabeshima Y, Tsuruta T, Kataoka K, Okano T, Yui N, Sakurai Y (1989) J Immunol Methods 117:289–293

    Article  CAS  Google Scholar 

  19. Melucci D, Guardigli M, Roda B, Zattoni A, Reschiglian P, Roda A (2003) Talanta 60:303–312

    Article  CAS  Google Scholar 

  20. Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, Lelli R, Roda A (2007) J Agric Food Chem 55:4933–4939

    Article  CAS  Google Scholar 

  21. Reschiglian P, Zattoni A, Roda B, Casolari S, Moon MH, Lee J, Jung J, Rodmalm K, Cenacchi G (2002) Anal Chem 74:4895–4904

    Article  CAS  Google Scholar 

  22. Roda B, Cioffi N, Ditaranto N, Zattoni A, Casolari S, Melucci D, Reschiglian P, Sabbatini L, Valentini A, Zambonin PG (2005) Anal Bioanal Chem 381:639–646

    Article  CAS  Google Scholar 

  23. Melucci D, Roda B, Zattoni A, Casolari S, Reschiglian P, Roda A (2004) J Chrom A 1056:229–236

    CAS  Google Scholar 

  24. Dammer U, Heger M, Anselmetti D, Wagner P, Dreier M, Huber W, Gϋntherodt H (1996) Biophys J 70:2437–2441

    Article  CAS  Google Scholar 

  25. Allen S, Davies J, Davies MC, Dawkes AC, Roberts CJ, Tendler SJB, Williams P (1999) Biochem J 341:173–178

    Article  CAS  Google Scholar 

  26. Stenitz M (2000) Anal Biochem 282:232–238

    Article  Google Scholar 

  27. Bohaychuk VM, Gensler GE, King RK, Wu JT, McMullen LM (2005) J Food Prot 68:2637–2647

    Google Scholar 

  28. Deisingh AK, Thompson M (2004) J Appl Microbiol 96:419–429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the University of Bologna (“Strategic University Projects” and “RFO—Focused fundamental research projects”) and by the Italian Ministry for Education, University and Research (“PRIN 2007” projects).

The authors are grateful to the Istituto Zooprofilattico “G. Caporale” (Teramo, Italy) for kindly providing the anti-Yersinia-enterocolitica monoclonal antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Roda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roda, B., Casolari, S., Reschiglian, P. et al. Hybrid gravitational field-flow fractionation using immunofunctionalized walls for integrated bioanalytical devices. Anal Bioanal Chem 394, 953–961 (2009). https://doi.org/10.1007/s00216-009-2714-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2714-z

Keywords

Navigation