Skip to main content
Log in

New concept for a toxicity assay based on multiple indexes from the wave shape of damped metabolic oscillation induced in living yeast cells (part II): application to analytical toxicology

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An ideal toxicity assay should utilize multiple indexes obtained from transient changes of metabolic activities. Here, we demonstrate the possibility for a novel toxicity bioassay using the damped glycolytic oscillation phenomenon occurring in starved yeast cells. In a previous study, the phenomenon was characterized in detail. Under optimum conditions to induce the phenomenon, the wave shapes of the damped glycolytic oscillations were changed by the instantaneous addition of both glucose and chemicals and by changing the chemical concentration. We estimated the changes in the oscillation wave shapes as six indexes, i.e., the number of wave cycles, maximum amplitude, oscillation frequency, attenuation coefficient, initial peak height, and non-steady-state time. These index changes were obtained from several kinds of chemicals. The chemicals, especially those for acids (0.01–100 mM HCl and 0.01–50 mM citric acid), bases (0.001–50 mM KOH), heavy metal ions (1–1,000 mg L−1; Cu2+, Pb2+, Cd2+, Hg2+), respiratory inhibitors (3–500 mg L−1 NaN3), dissolved oxygen removers (10–300 mg L−1 NaSO3), surfactants (10–200 mg L−1 benzalkonium chloride), and aldehyde (10–1,000 mg L−1 acetaldehyde), showed characteristic patterns depending on each chemical and its concentration. These significant results demonstrate the possibilities of new methods for both toxicity qualification and quantification.

Influences of surfactant on the oscillation wave shape

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RSD:

relative standard deviation

IPH:

initial peak height

NWC:

number of wave cycles

MA:

maximum amplitude

AC:

attenuation coefficient

OP:

oscillation period

OST:

oscillation-state time

References

  1. Morgan WSG (1977) Prog Water Technol 9:703–711

    CAS  Google Scholar 

  2. Schalie WH, Shedd TR, Knechtges PL, Widder MW (2001) Biosens Bioelectron 16:457–465

    Article  Google Scholar 

  3. Zhu JY, Huang HQ, Bao XD, Lin QM, Cai Z (2006) Aquat Toxicol 278:127–135

    Article  Google Scholar 

  4. Kaji T (2004) Yakugaku Zasshi (in Japanese) 124:113–120

    Article  CAS  Google Scholar 

  5. Ayala-Fierro F, Barber DS, Rael LT, Carter DE (1999) Toxicol Sci 52:122–129

    Article  CAS  Google Scholar 

  6. Saghir SA, Hansen LG (1999) Ecotoxicol Environ Safety 42:177–184

    Article  CAS  Google Scholar 

  7. Blaise C (1998) Ecotoxicol Environ Safety 40:115–119

    Article  CAS  Google Scholar 

  8. Nakamura H, Karube I (2003) Anal Bioanal Chem 377:446–468

    Article  CAS  Google Scholar 

  9. Nakamura H, Karube I (2005) Microbial biosensors. In: Grimes CA et al (eds) Encyclopedia of sensors. American Scientific Publishers, New York, 6:87–126

  10. Bousse L (1996) Sens Act B 34:270–275

    Article  Google Scholar 

  11. D’Souza SF (2001) Biosens Bioelectron 16:337–353

    Article  CAS  Google Scholar 

  12. Baronian KHR (2004) Biosens Bioelectron 19:953–962

    Article  CAS  Google Scholar 

  13. Lelie D, Corbisiera P, Baeyensa W, Wuertza S, Dielsa L, Mergeaya M (1994) Res Microbiol 145:67–74

    Article  Google Scholar 

  14. Belkin S (2003) Curr Opin Microbiol 6:206–212

    Article  CAS  Google Scholar 

  15. Lazarova V, Manem J (1995) Water Res 29:2227–2245

    Article  CAS  Google Scholar 

  16. Karube I, Mitsuda S, Matsunaga T, Suzuki S (1977) J Ferment Technol 55:243–248

    CAS  Google Scholar 

  17. Hikuma H, Suzuki H, Yasuda T, Karube I, Suzuki S (1979) Eur J Appl Microbiol Biotechnol 8:289–297

    Article  CAS  Google Scholar 

  18. Kong Z, Vanrolleghem PA, Verstraete W (1993) Biosens Bioelectr 8:49–58

    Article  CAS  Google Scholar 

  19. Nakanishi K, Ikebukuro K, Karube I (1996) Appl Biochem Biotech 60:97–106

    CAS  Google Scholar 

  20. Ikebukuro K, Miyata A, Cho SJ, Nomura Y, Chang SM, Yamauchi Y, Hasebe Y, Uchiyama S, Karube I (1996) J Biotechnol 48:73–80

    Article  CAS  Google Scholar 

  21. Ikebukuro K, Nakamura H, Karube I (2000) Cyanides. In: Nollet LML (ed) Handbook of water analysis. Marcel Dekker, New York, pp 367–385

    Google Scholar 

  22. Guliy OI, Ignatov OV, Makarov OE, Ignatov VV (2003) Biosens Bioelectr 18:1005–1013

    Article  CAS  Google Scholar 

  23. Karube I, Matsunaga T, Suzuki S (1979) Anal Chim Acta 109:39–44

    Article  CAS  Google Scholar 

  24. Tizzard A, Webber J, Gooneratne R, John R, Hay J, Pasco N (2004) Anal Chim Acta 522:197–205

    Article  CAS  Google Scholar 

  25. Bentley A, Atkinson A, Jezek J, Rawson DM (2001) Toxicol Vitro 15:469–475

    Article  CAS  Google Scholar 

  26. Steinberg SM, Poziomek EJ, Engelmann WH, Rogers KR (1995) Chemosphere 30:2155–2197

    Article  CAS  Google Scholar 

  27. Bulich AA (1979) In Aquatic Toxicology: Markings LL, Kimerle RA (eds) Aquatic toxicology. American Society for Testing and Materials, pp 98–106

  28. Quershi AA, Bulich AA, Isenberg DL (1998) Microscale Testing. In: Wells PG et al (eds) Aquatic toxicology. CRC Press, pp 185–199

  29. Weitz HJ, Champbell CD, Killham K (2002) Environ Microbiol 4:422–429

    Article  CAS  Google Scholar 

  30. Rapp PE (1979) J Experimt Biol 81:281–306

    CAS  Google Scholar 

  31. Duysens LNM (1957) Amesz J Biochim Biophys Acta 24:19–26

    Article  CAS  Google Scholar 

  32. Yamazaki S, Miki K, Kano K, IAkeda T (2001) J Electrochem Chem 516:59–65

    Article  CAS  Google Scholar 

  33. Hess B, Boiteux AI (1968) Hoppe-Seyler’s Z Physiol Chem 349:1567–1574

    CAS  Google Scholar 

  34. Nakamura H, Suzuki M (2007) Anal Bioanal Chem (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nakamura.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, H., Suzuki, M. New concept for a toxicity assay based on multiple indexes from the wave shape of damped metabolic oscillation induced in living yeast cells (part II): application to analytical toxicology. Anal Bioanal Chem 389, 1233–1241 (2007). https://doi.org/10.1007/s00216-007-1513-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1513-7

Keywords

Navigation