Skip to main content
Log in

Detection and identification of IHN and ISA viruses by isothermal DNA amplification in microcapillary tubes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Unique base sequences derived from RNA of both infectious hematopoietic necrosis virus (IHNV) and infectious salmon anemia virus (ISAV) were detected and identified using a combination of surface-associated molecular padlock DNA probes (MPPs) and rolling circle amplification (RCA) in microcapillary tubes. DNA oligonucleotides with base sequences identical to RNA obtained from IHNV or ISAV were recognized by MPPs. Circularized MPPs were then captured on the inner surfaces of glass microcapillary tubes by immobilized DNA oligonucleotide primers. Extension of the immobilized primers by isothermal RCA produced DNA concatamers, which were labeled with fluorescent SYBR Green II nucleic acid stain, and measured by microfluorimetry. Molecular padlock probes, combined with this method of surface-associated isothermal RCA, exhibited high selectivity without the need for thermal cycling. This method is applicable to the design of low-power field sensors capable of multiplex detection of viral, bacterial, and protozoan pathogens within localized regions of microcapillary tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oroskar AA, Rasmussen SE, Rasmussen HN, Rasmussen SR, Sullivan BM, Johansson A (1996) Clin Chem 42:1547–1555

    CAS  Google Scholar 

  2. Rasmussen SR, Rasmussen HB, Larsen MR, Hoff-Jorgensen R, Cano RJ (1994) Clin Chem 40:200–205

    CAS  Google Scholar 

  3. Andreadis JD, Chrisey LA (2000) Nucleic Acids Res 28:e5

    Article  CAS  Google Scholar 

  4. Khudyakov Yu E, Gaur L, Singh J, Patel P, Fields HA (1994) Nucleic Acids Res 22:1320–1321

    Article  Google Scholar 

  5. Carmon A, Vision TJ, Mitchell SE, Thannhauser TW, Muller U, Kresovich S (2002) Biotechniques 32:410, 412, 414–8, 420

    CAS  Google Scholar 

  6. Li HH, Gyllensten UB, Cui XF, Saiki RK, Erlich HA, Arnheim N (1988) Nature 335:414–417

    Article  CAS  Google Scholar 

  7. Liao CS, Lee GB, Wu JJ, Chang CC, Hsieh TM, Huang FC, Luo CH (2005) Biosens Bioelectron 20:1341–1348

    Article  CAS  Google Scholar 

  8. Hindson BJ, Makarewicz AJ, Setlur US, Henderer BD, McBride MT, Dzenitis JM (2005) Biosens Bioelectron 20:1925–1931

    Article  CAS  Google Scholar 

  9. Vernon SD, Farkas DH, Unger ER, Chan V, Miller DL, Chen YP, Blackburn GF, Reeves WC (2003) BMC Infect Dis 3:12

    Article  Google Scholar 

  10. Ivnitski D, O’Neil DJ, Gattuso A, Schlicht R, Calidonna M, Fisher R (2003) Biotechniques 35:862–869

    CAS  Google Scholar 

  11. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Nucleic Acids Res 28:e63

    Article  CAS  Google Scholar 

  12. Hataoka Y, Zhang L, Mori Y, Tomita N, Notomi T, Baba Y (2004) Anal Chem 76:3689–3693

    Article  CAS  Google Scholar 

  13. Gunimaladevi I, Kono T, LaPatra S, Sakai M (2005) Arch Virol 150:899–909

    Article  CAS  Google Scholar 

  14. Caipang CMA, Haraguchi I, Ohira T, Hirono I, Aoki T (2004) J Virol Meth 121:155–161

    Article  CAS  Google Scholar 

  15. Fire A, Xu SQ (1995) Proc Natl Acad Sci USA 92:4641–4645

    Article  CAS  Google Scholar 

  16. Liu D, Daubendiek S, Zillman M, Ryan K, Kool E (1996) J Am Chem Soc 118:1587–1594

    Article  CAS  Google Scholar 

  17. Lizardi P, Huang X-H, Zhu Z, Bray-Ward P, Thomas D, Ward D (1998) Nature Genetics 19:225–232

    Article  CAS  Google Scholar 

  18. Demidov VV (2002) Expert Rev Mol Diagn 2:442–548

    Google Scholar 

  19. Millard PJ, Bickerstaff LE, LaPatra SE, Kim CH (2006) J Fish Dis 29:201–213

    Article  CAS  Google Scholar 

  20. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary B, Landegren U (1994) Science 265:2085–2088

    Article  CAS  Google Scholar 

  21. Hatch A, Sano T, Misasi J, Smith CL (1999) Genet Anal 15:35–40

    CAS  Google Scholar 

  22. Zhang DY, Liu B (2003) Expert Rev Mol Diagn 3:237–248

    Article  CAS  Google Scholar 

  23. McCarthy EL, Bickerstaff LE, Pereira da Cunha M, Millard PJ (2006) Biosens Bioelectron (in press)

  24. McCarthy EL, Egeler T, Bickerstaff L, Pereira da Cunha M, Millard PJ (2005) Proc SPIE 5994(0X):1–7

    Google Scholar 

  25. Morzunov S, Winton J, Nichol S (1995) Virus Res 38:175–192

    Article  CAS  Google Scholar 

  26. Clouthier S, Rector T, Brown N, Anderson E (2002) J Gen Virol 83:421–428

    CAS  Google Scholar 

  27. Kanan SM, Tze WTY, Tripp CP (2002) Langmuir 18:6623–6627

    Article  CAS  Google Scholar 

  28. Munir K, Kibenge FS (2004) J Virol Methods 117:37–47

    Article  CAS  Google Scholar 

  29. Binder H, Kirsten T, Loeffler M, Stadler PF (2004) J Phys Chem 108:18003–18014

    CAS  Google Scholar 

  30. Nerette P, Dohoo I, Hammell L (2005) J Fish Dis 28:89–99

    Article  CAS  Google Scholar 

  31. Nerette P, Dohoo I, Hammell L, Gagne N, Barbash P, MacLean S, Yason C (2005) J Fish Dis 28:101–110

    Article  CAS  Google Scholar 

  32. Nkodo AE, Garnier JM, Tinland B, Ren H, Desruisseaux C, McCormick LC, Drouin G, Slater GW (2001) Electrophoresis 22:2424–2432

    Article  CAS  Google Scholar 

  33. Robertson RM, Laib S, Smith DE (2006) Proc Natl Acad Sci USA 103:7310–7314

    Article  CAS  Google Scholar 

  34. Doktycz MJ, Beattie KL (1997) In: Beugelsdijk TJ (ed) Automation technologies for genome characterization. Wiley & Sons, New York, pp 205–225

  35. Beattie WG, Meng L, Turner SL, Varma RS, Dao DD, Beattie KL (1995) Mol Biotechnol 4:213–225

    CAS  Google Scholar 

  36. Peterson AW, Heaton RJ, Georgiadis RM (2001) Nucleic Acids Res 29:5163–5168

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Drs. Carl Tripp and Ben McCool for their help with procedures for amine derivatization of glass microcapillaries, and Dr. Carol Kim for helpful discussion and reading of the manuscript. This work was supported in part by Maine Sea Grant NA16RG1034 and National Science Foundation grants ECS-0329913 and EEC-0452021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Millard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, E.L., Egeler, T.J., Bickerstaff, L.E. et al. Detection and identification of IHN and ISA viruses by isothermal DNA amplification in microcapillary tubes. Anal Bioanal Chem 386, 1975–1984 (2006). https://doi.org/10.1007/s00216-006-0872-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0872-9

Keywords

Navigation