Skip to main content
Log in

Investigation of structure, dynamics and function of metalloproteins with electrospray ionization mass spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrospray ionization mass spectrometry (ESI MS) has emerged recently as a powerful tool for analyzing many structural and behavioral aspects of metalloproteins in great detail. In this review we discuss recent developments in the field, placing particular emphasis on the unique features of ESI MS that lend themselves to metalloprotein characterization at a variety of levels. Direct mass measurement enables the determination of protein–metal ion binding stoichiometry in solution and metalloprotein higher order structure in the case of multi-subunit proteins. MS techniques have been developed for determining the locations of metal-binding centers, metal oxidation states and reaction intermediates of metal-containing enzymes. Other ESI MS techniques are also discussed, such as protein ion charge state distributions and hydrogen/deuterium exchange studies, which can be used to measure metal binding affinities and to shed light on vital dynamic aspects of the functional properties of metalloproteins endowed by metal binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lehnert N, George SD, Solomon EI (2001) Recent advances in bioinorganic spectroscopy. Curr Opin Chem Biol 5:176–187

    Article  CAS  Google Scholar 

  2. Loo JA (1997) Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16:1–23

    Article  CAS  Google Scholar 

  3. Yu X, Wojciechowski M, Fenselau C (1993) Assessment of metals in reconstituted metallothioneins by electrospray mass spectrometry. Anal Chem 65:1355–1359

    Article  CAS  Google Scholar 

  4. Hu P, Ye QZ, Loo JA (1994) Calcium stoichiometry determination for calcium binding proteins by electrospray ionization mass spectrometry. Anal Chem 66:4190–4194

    Article  CAS  Google Scholar 

  5. Loo JA, Hu PF, Smith RD (1994) Interaction of angiotensin peptides and zinc metal-ions probed by electrospray-ionization mass-spectrometry. J Am Soc Mass Spectrom 5:959–965

    Article  CAS  Google Scholar 

  6. Venters RA, Benson LM, Craig TA, Paul KH, Kordys DR, Thompson R, Naylor S, Kumar R, Cavanagh J (2003) The effects of Ca2+ binding on the conformation of calbindin D28K: A nuclear magnetic resonance and microelectrospray mass spectrometry study. Anal Biochem 317:59–66

    Article  CAS  Google Scholar 

  7. Zaia J, Fabris D, Wei D, Karpel RL, Fenselau C (1998) Monitoring metal ion flux in reactions of metallothionein and drug-modified metallothionein by electrospray mass spectrometry. Protein Sci 7:2398–2404

    Google Scholar 

  8. He F, Hendrickson CL, Marshall AG (2000) Unequivocal determination of metal atom oxidation state in naked heme proteins: Fe(III) myoglobin, Fe(III) cytochrome c, Fe(III) cytochrome b5, and Fe(III)cytochrome b5 L47R. J Am Soc Mass Spectrom 11:120–126

    Article  CAS  Google Scholar 

  9. Johnson KA, Verhagen MF, Brereton PS, Adams MW, Amster IJ (2000) Probing the stoichiometry and oxidation states of metal centers in iron-sulfur proteins using electrospray FTICR mass spectrometry. Anal Chem 72:1410–1418

    Article  CAS  Google Scholar 

  10. Johnson KA, Shira BA, Anderson JL, Amster IJ (2001) Chemical and on-line electrochemical reduction of metalloproteins with high-resolution electrospray ionization mass spectrometry detection. Anal Chem 73:803–808

    Article  CAS  Google Scholar 

  11. Kaltashov IA, Cotter RJ, Feinstone WH, Ketner GW, Woods AS (1997) Ferrichrome: Surprising stability of a cyclic peptide Fe-III complex revealed by mass spectrometry. J Am Soc Mass Spectrom 8:1070–1077

    Article  CAS  Google Scholar 

  12. Nemirovskiy OV, Gross ML (1998) Determination of calcium binding sites in gas-phase small peptides by tandem mass spectrometry. J Am Soc Mass Spectrom 9:1020–1028

    Article  CAS  Google Scholar 

  13. Gonzalez de Peredo A, Saint-Pierre C, Adrait A, Jacquamet L, Latour J-M, Michaud-Soret I, Forest E (1999) Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli: chemical modification and mass spectrometry analysis. Biochemistry 38:8582–8589

    Article  Google Scholar 

  14. Apuy JL, Busenlehner LS, Russell DH, Giedroc DP (2004) Ratiometric pulsed alkylation mass spectrometry as a probe of thiolate reactivity in different metalloderivatives of Staphylococcus aureus pI258 CadC. Biochemistry 43:3824–3834

    Article  CAS  Google Scholar 

  15. Lim J, Vachet RW (2003) Development of a methodology based on metal-catalyzed oxidation reactions and mass spectrometry to determine the metal binding sites in copper metalloproteins. Anal Chem 75:1164–1172

    Article  CAS  Google Scholar 

  16. Lei QP, Cui X, Kurtz DM Jr, Amster IJ, Chernushevich IV, Standing KG (1998) Electrospray mass spectrometry studies of non-heme iron-containing proteins. Anal Chem 70:1838–1846

    Article  CAS  Google Scholar 

  17. Fabris D, Fenselau C (1999) Characterization of allosteric insulin hexamers by electrospray ionization mass spectrometry. Anal Chem 71:384–387

    Article  CAS  Google Scholar 

  18. Lippincott J, Fattor TJ, Lemon DD, Apostol I (2000) Application of native-state electrospray mass spectrometry to identify zinc-binding sites on engineered hemoglobin. Anal Biochem 284:247–255

    Article  CAS  Google Scholar 

  19. Afonso C, Hathout Y, Fenselau C (2004) Evidence for zinc ion sharing in metallothionein dimers provided by collision-induced dissociation. Int J Mass Spectrom 231:207–211

    Article  CAS  Google Scholar 

  20. Konermann L, Douglas DJ (1997) Acid-induced unfolding of cytochrome c at different methanol concentrations: Electrospray ionization mass spectrometry specifically monitors changes in the tertiary structure. Biochemistry 36:12296–12302

    Article  CAS  Google Scholar 

  21. Gumerov DR, Kaltashov IA (2001) Dynamics of iron release from transferrin N-lobe studied by electrospray ionization mass spectrometry. Anal Chem 73:2565–2570

    Article  CAS  Google Scholar 

  22. Gumerov DR, Mason AB, Kaltashov IA (2003) Interlobe communication in human serum transferrin: metal binding and conformational dynamics investigated by electrospray ionization mass spectrometry. Biochemistry 42:5421–5428

    Article  CAS  Google Scholar 

  23. Lin LN, Mason AB, Woodworth RC, Brandts JF (1994) Calorimetric studies of serum transferrin and ovotransferrin. Estimates of domain interactions, and study of the kinetic complexities of ferric ion binding. Biochemistry 33:1881–1888

    Article  CAS  Google Scholar 

  24. van den Bremer ET, Jiskoot W, James R, Moore GR, Kleanthous C, Heck AJ, Maier CS (2002) Probing metal ion binding and conformational properties of the colicin E9 endonuclease by electrospray ionization time-of-flight mass spectrometry. Protein Sci 11:1738–1752

    Article  CAS  Google Scholar 

  25. Jeffrey PD, Bewley MC, MacGillivray RT, Mason AB, Woodworth RC, Baker EN (1998) Ligand-induced conformational change in transferrins: crystal structure of the open form of the N-terminal half-molecule of human transferrin. Biochemistry 37:13978–13986

    Article  CAS  Google Scholar 

  26. Dobo A, Kaltashov IA (2001) Detection of multiple protein conformational ensembles in solution via deconvolution of charge state distributions in ESI MS. Anal Chem 73:4763–4773

    Article  CAS  Google Scholar 

  27. Mohimen A, Dobo A, Hoerner JK, Kaltashov IA (2003) A chemometric approach to detection and characterization of multiple protein conformers in solution using electrospray ionization mass spectrometry. Anal Chem 75:4139–4147

    Article  CAS  Google Scholar 

  28. Komives EA (2005) Protein–protein interaction dynamics by amide H/2H exchange mass spectrometry. Int J Mass Spectrom 240:285–290

    Article  CAS  Google Scholar 

  29. Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25:158–170

    Article  CAS  Google Scholar 

  30. Xiao H, Hoerner JK, Eyles SJ, Dobo A, Voigtman E, Mel’cuk AI, Kaltashov IA (2005) Mapping protein energy landscapes with amide hydrogen exchange and mass spectrometry: I. A generalized model for a two-state protein and comparison with experiment. Protein Sci 14:543–557

    Article  CAS  Google Scholar 

  31. Engen JR, Smith DL (2001) Investigating protein structure and dynamics by hydrogen exchange MS. Anal Chem 73:256A–265A

    Article  CAS  Google Scholar 

  32. Kaltashov IA, Eyles SJ (2002) Crossing the phase boundary to study protein dynamics and function: combination of amide hydrogen exchange in solution and ion fragmentation in the gas phase. J Mass Spectrom 37:557–565

    Article  CAS  Google Scholar 

  33. Wang F, Li W, Emmett MR, Marshall AG, Corson D, Sykes BD (1999) Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca2+-induced conformational changes in the regulatory domain of human cardiac troponin C. J Am Soc Mass Spectrom 10:703–710

    Article  CAS  Google Scholar 

  34. Gonzalez de Peredo A, Saint-Pierre C, Latour JM, Michaud-Soret I, Forest E (2001) Conformational changes of the ferric uptake regulation protein upon metal activation and DNA binding; first evidence of structural homologies with the diphtheria toxin repressor. J Mol Biol 310:83–91

    Article  CAS  Google Scholar 

  35. Krishna MMG, Hoang L, Lin Y, Englander SW (2004) Hydrogen exchange methods to study protein folding. Methods 34:51–64

    Article  CAS  Google Scholar 

  36. Xiao H, Kaltashov IA, Eyles SJ (2003) Indirect assessment of small hydrophobic ligand binding to a model protein using a combination of ESI MS and HDX/ESI MS. J Am Soc Mass Spectrom 14:506–515

    Article  CAS  Google Scholar 

  37. Zhu MM, Rempel DL, Du Z, Gross ML (2003) Quantification of protein-ligand interactions by mass spectrometry, titration, and H/D exchange: PLIMSTEX. J Am Chem Soc 125:5252–5253

    Article  CAS  Google Scholar 

  38. Zhu MM, Rempel DL, Zhao J, Giblin DE, Gross ML (2003) Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength. Biochemistry 42:15388–15397

    Article  CAS  Google Scholar 

  39. Chivers PT, Sauer RT (2002) NikR repressor: high-affinity nickel binding to the C-terminal domain regulates binding to operator DNA. Chem Biol 9:1141–1148

    Article  CAS  Google Scholar 

  40. Mazon H, Marcillat O, Forest E, Vial C (2003) Changes in MM-CK conformational mobility upon formation of the ADP–Mg2+–NO 3 creatine transition state analogue complex as detected by hydrogen/deuterium exchange. Biochemistry 42:13596–13604

    Article  CAS  Google Scholar 

  41. Kulkarni PP, She YM, Smith SD, Roberts EA, Sarkar B (2006) Proteomics of metal transport and metal-associated diseases. Chemistry 12:2410–2422

    Article  CAS  Google Scholar 

  42. Stutz H (2005) Advances in the analysis of proteins and peptides by capillary electrophoresis with matrix-assisted laser desorption/ionization and electrospray–mass spectrometry detection. Electrophoresis 26:1254–1290

    Article  CAS  Google Scholar 

  43. Prange A, Profrock D (2005) Application of CE-ICP-MS and CE-ESI-MS in metalloproteomics: challenges, developments, and limitations. Anal Bioanal Chem 383:372–389

    Article  CAS  Google Scholar 

  44. Prange A, Schaumloffel D (2002) Hyphenated techniques for the characterization and quantification of metallothionein isoforms. Anal Bioanal Chem 373:441–453

    Article  CAS  Google Scholar 

  45. Nischwitz V, Michalke B, Kettrup A (2003) Identification and quantification of metallothionein isoforms and superoxide dismutase in spiked liver extracts using HPLC-ESI-MS offline coupling and HPLC-ICP-MS online coupling. Anal Bioanal Chem 375:145–156

    CAS  Google Scholar 

  46. Thompson DK, Beliaev AS, Giometti CS, Tollaksen SL, Khare T, Lies DP, Nealson KH, Lim J, Yates J, Brandt CC, Tiedje JM, Zhou JZ (2002) Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: Possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl Environ Microbiol 68:881–892

    Article  CAS  Google Scholar 

  47. Khare T, Esteve-Nunez A, Nevin KP, Zhu WH, Yates JR, Lovley D, Giometti C S (2006) Differential protein expression in the metal-reducing bacterium Geobacter sulfurreducens strain PCA grown with fumarate or ferric citrate. Proteomics 6:632–640

    Article  CAS  Google Scholar 

  48. Wind M, Lehmann WD (2004) Element and molecular mass spectrometry an emerging analytical dream team in the life sciences. J Anal Atom Spectrom 19:20–25

    Article  CAS  Google Scholar 

  49. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal Atom Spectrom 19:5–14

    Article  CAS  Google Scholar 

  50. Szpunar J (2004) Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem 378:54–56

    Article  CAS  Google Scholar 

  51. Zhang M, Gumerov DR, Kaltashov IA, Mason AB (2004) Indirect detection of protein-metal binding: Interaction of serum transferrin with In3+ and Bi3+. J Am Soc Mass Spectrom 15:1658–1664

    Article  CAS  Google Scholar 

  52. Choudhury SB, Lee JW, Davidson G, Yim YI, Bose K, Sharma ML, Kang SO, Cabelli DE, Maroney MJ (1999) Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase. Biochemistry 38:3744–3752

    Article  Google Scholar 

  53. Youn HD, Kim EJ, Roe JH, Hah YC, Kang SO (1996) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J 318:889–896

    CAS  Google Scholar 

  54. Wuerges J, Lee J-W, Yim Y-I, Yim H-S, Kang S-O, Carugo KD (2004) Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci USA 101:8569–8574

    Article  CAS  Google Scholar 

  55. Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Nickel superoxide dismutase structure and mechanism. Biochemistry 43:8038–8047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant R01 GM061666 from the National Institutes of Health and a Research Innovation Award from the Research Corporation (Tucson, AZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Kaltashov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaltashov, I.A., Zhang, M., Eyles, S.J. et al. Investigation of structure, dynamics and function of metalloproteins with electrospray ionization mass spectrometry. Anal Bioanal Chem 386, 472–481 (2006). https://doi.org/10.1007/s00216-006-0636-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0636-6

Keywords

Navigation