Skip to main content
Log in

Quantitative NMR spectroscopy of complex technical mixtures using a virtual reference: chemical equilibria and reaction kinetics of formaldehyde–water–1,3,5-trioxane

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quantitative 1H NMR spectroscopy was used to study chemical equilibria and reaction kinetics of both the formation and decomposition of 1,3,5-trioxane in aqueous formaldehyde solutions. The reaction was homogeneously catalyzed with up to 0.10 g g−1 sulfuric acid at temperatures between 360 and 383 K so that most of the experiments had to be carried out pressurized. The studied mixtures were complex due to the formation of methylene glycol and poly(oxymethylene) glycols in aqueous formaldehyde and the presence of considerable amounts of ionized species. Most common internal standards are decomposed by the hot sulfuric acid and external standards were not applicable using the flow NMR probe or pressurizable NMR sample tubes. Therefore, for the quantification of the small trioxane signals, a novel procedure was applied, in which electronically generated NMR signals were used as highly stable Virtual References (VR). The NMR decoupler channel with wave-form generator was used as the source of the reference signal, which was irradiated into the probe using the lock coil. Details on the experimental procedure are presented. It is shown that the presented method yields reliable quantitative reaction data for the complex studied mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reuss G, Disteldorf W, Gramer AO, Hilt A (2003) Ullmann’s Encyclopedia of Industrial Chemistry 15:1–35

    Google Scholar 

  2. Walker JF (1964) Formaldehyde. Reinhold ACS Monograph Series, New York

    Google Scholar 

  3. Sextro G (2003) Ullmann’s Encyclopedia of Industrial Chemistry 28:509–522

    Google Scholar 

  4. Balashov AL, Danov SM, Golovkin AY, Krasnov VL, Ponomarev AN, Borisova IA (1996) Russ J App Chem 69:190–192

    Google Scholar 

  5. Balashov AL, Danov SM, Krasnov VL, Chernov AY, Ryabova TA (2002) Russ J Gen Chem 72:744–747

    Article  CAS  Google Scholar 

  6. Albert M (1999) Thermodynamische Eigenschaften formaldehydhaltiger Mischungen. Shaker, Aachen

    Google Scholar 

  7. Albert M, Garcia BC, Kuhnert C, Peschla R, Maurer G (2000) AIChE J 46:1676–1687

    Article  CAS  Google Scholar 

  8. Hahnenstein I, Albert M, Hasse H, Kreiter CG, Maurer G (1995) Ind Eng Chem Res 34:440–450

    Article  CAS  Google Scholar 

  9. Hahnenstein I, Hasse H, Kreiter CG, Maurer G (1994) Ind Eng Chem Res 33:1022–1029

    Article  CAS  Google Scholar 

  10. Ott M, Fischer HH, Maiwald M, Albert K, Hasse H (2004) Chem Eng Proc 44:653–660

    Article  Google Scholar 

  11. Ott M (2004) Reaktionskinetik und Destillation formaldehydhaltiger Mischungen. Shaker, Aachen

    Google Scholar 

  12. Maiwald M, Fischer HH, Ott M, Peschla R, Kuhnert C, Kreiter CG, Maurer G, Hasse H (2003) Ind Eng Chem Res 42:259–266

    Article  CAS  Google Scholar 

  13. Maiwald M, Fischer HH, Kim Y-K, Albert K, Hasse H (2004) J Magn Reson 166:135–146

    Article  CAS  Google Scholar 

  14. Moedritzer K, Van Wazer JR (1966) J Phys Chem 6:2025–2029

    Article  Google Scholar 

  15. Elenkov D, Petrov PD, Tokarev D (1979) Chemie Ing Techn 42(8):546–548

    Google Scholar 

  16. Elenkov D, Petrov P, Grozev G (1969) Chemie Ing Techn 41(20):1128–1130

    Article  CAS  Google Scholar 

  17. Bartholomé E, Köhler W, Schecker HG, Schulz G (1971) Chemie Ing Techn 43(10):597–601

    Article  Google Scholar 

  18. Hasse H (1990) Dampf-Flüssigkeits-Gleichgewichte, Enthalpien und Reaktionskinetik in formaldehydhaltigen Mischungen. PhD Thesis, Kaiserslautern

  19. Schecker H, Schulz G (1969) Z Phys Chem N F 65:221–224

    CAS  Google Scholar 

  20. Grützner T, Hasse H (2004) J Chem Eng Data 49:642–646

    Article  Google Scholar 

  21. Burg KH, Hermann HD, Rehling H (1968) Die Makromol Chemie 111:181–193

    Article  CAS  Google Scholar 

  22. Schilling K, Sohn M, Ströfer E, Hasse H (2003) Chemie Ing Techn 75:240–244

    Article  CAS  Google Scholar 

  23. Mahon HP (1969) Rev Sci Instrum 40:1644–1645

    Article  Google Scholar 

  24. Akoka S, Barantin L, Trierweiler M (1999) Anal Chem 71:2554–2557

    Article  CAS  Google Scholar 

  25. Billault I, Akoka S (2000) Instrum Sci Technol 28:233–240

    Article  CAS  Google Scholar 

  26. Silvestre V, Goupry S, Trierweiler M, Robins R, Akoka S (2001) Anal Chem 73:1862–1868

    Article  CAS  Google Scholar 

  27. Akoka S, Trierweiler M (2002) Instr Sci Technol 30:21–29

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of Florian Zieker, Johanna Schell, and Reeta Nording, Stuttgart, both for the experiments and their evaluation. Thanks are due also to Wolf Hiller, Varian Deutschland, Darmstadt, for help in implementing the Virtual Reference method. Financial support for this work by BASF AG, Ludwigshafen, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Hasse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiwald, M., Grützner, T., Ströfer, E. et al. Quantitative NMR spectroscopy of complex technical mixtures using a virtual reference: chemical equilibria and reaction kinetics of formaldehyde–water–1,3,5-trioxane. Anal Bioanal Chem 385, 910–917 (2006). https://doi.org/10.1007/s00216-006-0477-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0477-3

Keywords

Navigation