Skip to main content

Advertisement

Log in

Use of a proteomics approach to identify favourable conditions for production of good quality lambskin leather

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

It is necessary to understand the changes that occur during the initial processing of lamb skins, because these will affect the final quality of the leather. The types of collagen, their macro and micro structures, the presence of proteins other than collagens, and the quantity and the type of proteoglycans, all have a profound effect on the quality of leather. Proteins isolated from untreated or raw sheep skin and from pickled skin (skins treated with sodium sulfide and lime followed by bating with enzymes, then preserved in sodium chloride and sulfuric acid) were significantly different when analysed by use of 2D gel electrophoresis and mass spectrometry. Agarose gel electrophoresis with a very sensitive sequential staining procedure has been used to identify the glycosaminoglycans present in raw and treated skin and their impact on quality of leather. Results showed that effective removal of proteoglycans acting as inter-fibrillar adhesives of collagen fibrils seemed to improve leather quality. Removal of these molecules not only opens up the fibre structure of the skin but may also be important in wool removal. The presence of elastin, which imparts elastic properties to skin, is of significant importance to tanners. The amino acids desmosine and isodesmosine, found exclusively in elastin, were quantitatively analysed to assess the role of elastin in leather quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cassano A, Drioli E, Molinari R (1997) Desalination 113:251–261

    Article  CAS  Google Scholar 

  2. Cassano A, Drioli E, Molinari R, Grimaldi D, La cara F, Rossi M (2000) JSLTC 84:205–211

    CAS  Google Scholar 

  3. Aravindhan R, Saravanabhavan S, Raghava Rao J, Unni Nair B, Thanikaivelan P, Chandrasekaran B (2004) JALCA 99:53–66

    CAS  Google Scholar 

  4. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G (1996) Bio/Technology 14:61–65

    Article  CAS  Google Scholar 

  5. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Biotechnol. Genet Eng Rev 13:19–50

    CAS  Google Scholar 

  6. Kazlauskaite E, Balciuniene J, Zaliauskiene A, Beleska K, Valeika V, Valeikiene V (2002) JSLTC 86:59–64

    CAS  Google Scholar 

  7. Alexander KTW, Haines BM, Walker MP (1986) JALCA 81:85–100

    CAS  Google Scholar 

  8. Cooper S (1998) Proceeding of the New Zealand Leather and Shoe Research Association, Annual Conference. 49:31–44

  9. Partridge SM (1962) Adv Protein Chem 17:227–302

    Article  CAS  Google Scholar 

  10. Anwar RA (1966) Can J Biochem 44:725–734

    Article  CAS  Google Scholar 

  11. Berkelman T, Stenstedt T, 2D Electrophoresis, Using Immobilized pH Gradients, Principles and Methods (Amersham Biosciences; 80–6429–60 Rev–A, 10/98)

  12. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  13. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  14. Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Electrophoresis 20:601–605

    Article  CAS  Google Scholar 

  15. Aubert-Foucher E, Font B, Eichenberger D, Goldschmidt D, Lethias C, van der Rest M (1992) J Biol Chem 267:15759–15764

    CAS  Google Scholar 

  16. Sumner LW, Wolf-Sumner B, White SP, Asirvatham VS (2002) Mass Spectrom 16:160–168

    Google Scholar 

  17. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  18. Thornton DJ, Hunt S, Huckerby TN (1983) Biochim Biophys Acta 757:219–225

    CAS  Google Scholar 

  19. Farndale RW, Sayers CA, Barrett AJ (1982) Connect Tissue Res 9:247–248

    Article  CAS  Google Scholar 

  20. Volpi N, Maccari F (2002) Electrophoresis 23:4060–4066

    Article  CAS  Google Scholar 

  21. Saito H, Ymagata T, Suzuki S (1968) J Biol Chem 243:1536–1542

    CAS  Google Scholar 

  22. Skinner SJM (1982) J Chromatogr 229:200–204

    Article  CAS  Google Scholar 

  23. Yamaguchi Y, Haginaka J, Kunitomo M, Yasuda H, Bando Y (1987) J Chromatogr 42:253–259

    Google Scholar 

  24. Starcher BC (1977) Anal Biochem 79:11–15

    Article  CAS  Google Scholar 

  25. Keller W (1990) Leder und Hautmarkt, Gerbereiwissenschaft und Praxis, 42:117–127

  26. Stirtz T, Schroeder I (1982) Das Leder 33:67–78

    CAS  Google Scholar 

  27. Simpson DM, Beyon RJ, Robertson DHL, Loughran MJ, Haywood S (2004) Proteomics 4:524–536

    Article  CAS  Google Scholar 

  28. Kronick PL, Iandola S (1997) JALCA 92:172–178

    CAS  Google Scholar 

  29. Kronick PL, Iandola SK (1998) JALCA 93:148–155

    CAS  Google Scholar 

  30. Ha GH, Lee SU, Kang DG, Ha N, Kim SH, Kim J, Bae JM, Kim JW, Lee C (2000) Electrophoresis 23:2513–2524

    Article  Google Scholar 

  31. Bailey DG (1992) JALCA 87:26–35

    CAS  Google Scholar 

  32. Schoenherr E, Hausser H, Beavan L, Kresse H (1995) J Biol Chem 270:8877–8883

    Article  CAS  Google Scholar 

  33. Scott PG, McEwan PA, Dodd CM, Bergmann EM, Bishop PN, Bella J (2004) PNAS 101:15633–15638

    Article  CAS  Google Scholar 

  34. Goldoni S, Owens RT, McQuillan DJ, Shriver Z, Sasisekharan R, Birk DE, Campbell S, Iozzo RV (2004) J Biol Chem 279:6606–6612

    Article  CAS  Google Scholar 

  35. Scott PG, Grossmann JG, Dodd CM, Sheehan JK, Bishop PN (2003) J Biol Chem 278:18353–18359

    Article  CAS  Google Scholar 

  36. Herbert B, Galvani M, Hamdan M, Olivier E, MacCarthy J, Pedersen S, Righetti PG (2001) Electrophoresis 22:2046–2057

    Article  CAS  Google Scholar 

  37. Myers ER, Armstrong CG, Mow VC (1984) Connect. Tissue Matrix 5:161–186

    CAS  Google Scholar 

  38. Chopra RK, Pearson CH, Pringle GA, Fackre DS, Scott PG (1985) Biochem J 232:277–279

    CAS  Google Scholar 

  39. Ameye L, Young MF (2002) Glycobiology 12:107–116

    Article  Google Scholar 

  40. Roddy WT, O'Flaherty F (1938) JALCA 33:512–525

    CAS  Google Scholar 

  41. Manzo G (1988) Cuoio, Pelli, Materie Concianti 64: 276–285

    Google Scholar 

Download references

Acknowledgements

The financial assistance provided by the Foundation of Research, Science and Technology in carrying out this research project is gratefully acknowledged. (Grant LSRX0201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Norris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deb Choudhury, S., Allsop, T., Passman, A. et al. Use of a proteomics approach to identify favourable conditions for production of good quality lambskin leather . Anal Bioanal Chem 384, 723–735 (2006). https://doi.org/10.1007/s00216-005-0228-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0228-x

Keywords

Navigation