Skip to main content
Log in

A new approach for fast, simultaneous NO/NO2 analysis: application of basic features of multiphoton-induced ionization and dissociation of NOx

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new method of simultaneously recording NO and NO2 concentrations in complex gas mixtures is described. This method is based on resonance enhanced multiphoton ionization (REMPI), on time-of-flight mass analysis, and on monitoring the kinetic energy released upon dissociation of NO2. Its benefits are high speed and high flexibility. NO/NO2 analysis can therefore be combined with the simultaneous monitoring of other components. For instance, NH3 is a compound of interest when studying the chemical reactions of NOx in catalytic converters of combustion engines. The spectroscopic excitation schemes used for this new method are discussed in detail. Its reliability has been demonstrated by performing measurements at an industrial motor test facility. This novel technique performs well in comparison with conventional NOx analysis using chemiluminescence detection.

NOx-analysis of Diesel engine exhaust. Simultaneous fast detection of NO and NO2 by LAMS (laser mass spectrometry). Comparison of LAMS(NOx) with conventional CLD (chemiluminescence detection)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3
Fig. 4a–b
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The F+ fragment ion spectrum of molecule M is the spectrum obtained when exciting M while tuning the laser wavelength and monitoring F+ions

  2. This test facility is run by the University of Applied Sciences in Landshut, Germany in cooperation with BMW-Munich

References

  1. Yienger JJ, Klonecki AA, Levy H, Moxim WJ, Carmichael GRJ (1999) Geophys Res Atmos 104:3655

    Article  CAS  Google Scholar 

  2. Peckham M, Hands T, Burrell JD, Collings N, Schurow SM (1998) SAE Technical Paper Series 980400

  3. Simeonsson JB, Elwood SA, Niebes M, Carter R, Peck A (1999) Anal Chim Acta 397:33

    Google Scholar 

  4. Thornton JA, Woodridge PJ, Cohen RC (2000) Anal Chem 72:528

    Article  PubMed  CAS  Google Scholar 

  5. Bräumer EWA, Sick V, Wolfrum J, Drewes V, Maly RR, Zahn M (1995) SAE Technical Paper Series 952461

  6. Boesl U, Neusser HJ, Schlag EW (1978) Z Naturforsch A33:1546

    Google Scholar 

  7. Bernstein RB (1982) J Phys Chem 86:1178

    Article  CAS  Google Scholar 

  8. Cotter R (1984) Anal Chem 56:485A

  9. Lubman D (1984) Anal Chem 56:1256A

  10. Letokhov V (1987) Laser photoionization spectroscopy. Academic, New York

  11. Lubman D (1990) Lasers in mass spectrometry. Oxford University Press, New York

  12. Kompa K, Sick V, Wolfrum VJ (eds) (1993) Laser diagnostics for industrial processes (Special Issue). Ber Bunsen Phys Chem 97

  13. Schlag EW (ed) (1994) Time-of-flight mass spectrometry and its applications (Special Issue). Int J Mass Spectrom 131

  14. Boesl U (2000) J Mass Spectrom 35:289

    Google Scholar 

  15. Boesl U, Heger HJ, Zimmermann R, Püffel PK, Nagel H (2000) In: Meyers RA (ed) Encyclopedia of chemical analysis. Wiley, Chichester, UK, p 2087

  16. Boesl U (2004) In: Hering P, Lay JP, Stry S (eds) Lasers in environmental and life sciences. Springer, Berlin Heidelberg New York, p 165

  17. Zacharias H, Rottke H, Welge KH (1981) Appl Phys 24:23

  18. Garnica RM, Appel MF, Eagan L, McKeachie JR, Benter T (2000) Anal Chem 72:5639

  19. McKeachie JB, van der Veer WE, Short LC, Garnica RM, Apple MF, Benter T (2001) Analyst 126:1221

    Google Scholar 

  20. Ledingham KWD, Kosmidis C, Georgiou S, Couris S, Singhal RP (1995) Chem Phys Lett 247:555

    Google Scholar 

  21. Singhal RP, Kilic HS, Ledingham KWD, Kosmidis C, McCanny T, Langley AJ, Shaikh W (1996) Chem Phys Lett 253:81

    Google Scholar 

  22. Davies JA, LeClaire JE, Continetti RE, Hayden CC (1999) J Chem Phys 111:1

    Google Scholar 

  23. Busch GE, Wilson KR (1972) J Chem Phys 56:3626

    Article  CAS  Google Scholar 

  24. Busch GE, Wilson KR (1972) J Chem Phys 56:3638

    Article  CAS  Google Scholar 

  25. Bigio L, Grant EW (1987) J Chem Phys 87:360

    Article  CAS  Google Scholar 

  26. Bigio L, Grant EW (1987) J Chem Phys 88:1271

    Google Scholar 

  27. Ahmed M, Peterka D, Bracker AS, Vasyutinski OS, Suits AG (1999) J Chem Phys 110:4115

    Article  CAS  Google Scholar 

  28. Richter RC, Khamaganov VI, Hynes AJ (2000) Chem Phys Lett 319:341

    Article  CAS  Google Scholar 

  29. Schafer N, Tonokura K, Matsumi Y, Tasaki S, Kawasaki M (1991) J Chem Phys 95:6218

    Article  Google Scholar 

  30. Im HS, Bernstein ER (2002) J Phys Chem A106:7565

    Google Scholar 

  31. Marshall A, Clark A, Ledingham KWD, Sander J, Singhal RP (1993) Int J Mass Spectrom 125:R21

    Google Scholar 

  32. Weickhardt C, Boesl U, Schlag EW (1994) Anal Chem 66:1062

    Article  CAS  Google Scholar 

  33. Boesl U, Weishäupl R, Thiel W, Frey R (2005) SAE Technical Paper Series 2005-01-0679

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Boesl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornschlegl, A., Weishaeupl, R. & Boesl, U. A new approach for fast, simultaneous NO/NO2 analysis: application of basic features of multiphoton-induced ionization and dissociation of NOx . Anal Bioanal Chem 384, 161–168 (2006). https://doi.org/10.1007/s00216-005-0151-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0151-1

Keywords

Navigation