Skip to main content
Log in

A microfluidic SELEX prototype

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Aptamers are nucleic acid binding species capable of recognizing a wide variety of targets ranging from small organic molecules to supramolecular structures, including organisms. They are isolated from combinatorial libraries of synthetic nucleic acid by an iterative process referred to as SELEX (Systematic Evolution of Ligands by Exponential Enrichment). Here we describe an automated microfluidic, microline-based assembly that uses LabView-controlled actuatable valves and a PCR machine, and which is capable of the selection and synthesis of an anti-lysozyme aptamer as verified by sequence analysis. The microfluidic prototype described is 1) a simple apparatus that is relatively inexpensive to assemble, making automated aptamer selection accessible to many investigators, and 2) useful for the continued “morphing” of macro→meso→microfabricated structures until a convergence to a few functional systems evolves and emerges, partly or completely achieving simpler, smaller and more rapid SELEX applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jayasena SD (1999) Clin Chem 45:1628–1650

    PubMed  CAS  Google Scholar 

  2. Rajendran M, Ellington AD (2002) Comb Chem High T Scr 5:263–270

    CAS  Google Scholar 

  3. Wilson DS, Szostak JW (1999) Annu Rev Biochem 68:611–647

    Article  PubMed  CAS  Google Scholar 

  4. Tuerk C, Gold L (1990) Science 1249:505–510

    Article  Google Scholar 

  5. Ellington AD, Szostak JW (1990) Nature 346:818–822

    Article  PubMed  CAS  Google Scholar 

  6. Cox JC, Ellington AD (2001) Bioorgan Med Chem 9:2525–2531

    Google Scholar 

  7. Gold L, Zichi DA, Smith JD, Schneider DJ (2003) United States Patent Application Publication: US 2003/0054360 A1

  8. Wang J (2002) Electrophoresis 23:713–718

    Article  PubMed  CAS  Google Scholar 

  9. Hadd AG, Raymond DE, Halliwell JW, Jacobson SC, Ramsey JM (1997) Anal Chem 69:3407–3412

    Article  PubMed  CAS  Google Scholar 

  10. Sato K, Tokeshi M, Kimura H, Kitamori T (2001) Anal Chem 73:1213–1218

    Article  PubMed  CAS  Google Scholar 

  11. Wang J, Ibanez A, Chatrathi MP, Escarpa A (2001) Anal Chem 73:5323–5327

    Article  PubMed  CAS  Google Scholar 

  12. Righetti PG, Gelfi C, Acunto MR (2002) Electrophoresis 23:1361–1374

    Article  PubMed  CAS  Google Scholar 

  13. Fan ZH, Mangru S, Granzow R, Heaney P, Ho W, Dong Q, Kumar R (1999) Anal Chem 71:4851–4859

    Article  PubMed  CAS  Google Scholar 

  14. Anderson RC, Su X, Bogdan GJ, Fenton J (2000) Nucleic Acids Res 28:e60

    Article  PubMed  CAS  Google Scholar 

  15. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Anal Chem 76:1824–1831

    Article  PubMed  CAS  Google Scholar 

  16. Soper SA, Williams DC, Xu Y, Lassiter SJ, Zhang Y, Ford SM, Bruch RC (1998) Anal Chem 70:4038–4045

    Google Scholar 

  17. Hesselberth J, Robertson MP, Jhaveri S, Ellington AD (2000) Rev Mol Biotechnol 74:15–25

    Article  CAS  Google Scholar 

  18. Brody EN, Gold L (2000) J Mol Biotechnol 74:5–13

    Article  CAS  Google Scholar 

  19. Osbourne SE, Matsumura I, Ellington AD (1997) Curr Opin Chem Biol 1:5–9

    Article  PubMed  Google Scholar 

  20. McEnery M, Tan A, Alderman J, Patterson J, O’Mathuna SC, Glennon JD (2000) Analyst 125:25–27

    Article  CAS  Google Scholar 

  21. Liu H, Felten C, Xue Q, Zhang B, Jedrzjewski P, Karger BL, Foret F (2000) Anal Chem 72:3303–3310

    Article  PubMed  CAS  Google Scholar 

  22. Roper MG, Easley CJ, Landers JP (2005) Anal Chem 77:3887–3894

    Article  PubMed  CAS  Google Scholar 

  23. Mao H, Holdin MA, You M, Cremer PS (2002) Anal Chem 74:5071–5075

    Article  PubMed  CAS  Google Scholar 

  24. Koh CG, Tan W, Zhao M, Ricco AJ, Fan ZH (2003) Anal Chem 75:4591–4598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research reported in this document/presentation was supported in part by Contract number DAAD17-01-D-0001 (U.S. Army Research Laboratory) and NIH Grant 3S06GM008194-25S1. The views and conclusions contained in this document/presentation are those of the authors and should not be interpreted as presenting the official policies or position, either expressed or implied, of the U.S. Army Research Laboratory or the U.S. Government unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Chambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hybarger, G., Bynum, J., Williams, R.F. et al. A microfluidic SELEX prototype. Anal Bioanal Chem 384, 191–198 (2006). https://doi.org/10.1007/s00216-005-0089-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-0089-3

Keywords

Navigation