Skip to main content
Log in

Preservation strategies for inorganic arsenic species in high iron, low-Eh groundwater from West Bengal, India

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Despite the importance of accurately determining inorganic arsenic speciation in natural waters to predicting bioavailability and environmental and health impacts, there remains considerable debate about the most appropriate species preservation strategies to adopt. In particular, the high-iron, low-Eh (redox potential) shallow groundwaters in West Bengal, Bangladesh and SE Asia, the use of which for drinking and irrigation purposes has led to massive international concerns for human health, are particularly prone to changes in arsenic speciation after sampling. The effectiveness of HCl and EDTA preservation strategies has been compared and used on variably arsenic-rich West Bengali groundwater samples, analysed by ion chromatography–inductively coupled plasma–mass spectrometry (IC–ICP–MS). Immediate filtration and acidification with HCl followed by refrigerated storage was found to be the most effective strategy for minimizing the oxidation of inorganic As(III) during storage. The use of a PRP-X100 (Hamilton) column with a 20 mmol L−1 NH4H2PO4 as mobile phase enabled the separation of Cl from As(III), monomethylarsonic acid, dimethylarsinic acid and As(V), thereby eliminating any isobaric interference between 40Ar35Cl+ and 75As+. The use of EDTA as a preservative, whose action is impaired by the high calcium concentrations typical of these types of groundwater, resulted in marked oxidation during storage. The use of HCl is therefore indicated for analytical methods in which chloride-rich matrices are not problematical. The groundwaters analysed by IC–ICP–MS were found to contain between 5 and 770 ng As mL−1 exclusively as inorganic arsenic species. As(III)/total-As varied between 0 and 0.94.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smedley PL, Kinniburgh DG (2002) Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  2. Hall GEM, Pelchat JC, Gauthier G (1999) J Anal At Spec 7:1157–1165

    Article  Google Scholar 

  3. Terasahde P, Pantsar-Kallio M, Manninen PKG (1999) J Chromatogr A 750:83–88

    Article  Google Scholar 

  4. Wangkarn S, Pergantis SA (2000) J An Atom Spec 15:627–633

    Article  CAS  Google Scholar 

  5. Yokoyama T, Takahashi Y, Tautani T (1993) Chem Geol 103:103–111

    Article  CAS  Google Scholar 

  6. Rassler M, Michale B, Schramel P, Schuste-Hostede S, Kettrup A (1998) Int J Environ Anal Chem 72:195–203

    CAS  Google Scholar 

  7. Polya DA, Lythgoe PR, Abou-Shakra F, Gault AG, Brydie JR, Webster JG, Brown KL, Nimfopoulos, Michailidis KM (2003) Miner Mag 67:247–261

    Article  CAS  Google Scholar 

  8. Chakraborty AK, Saha KC (1987) Indian J Med Res 85:326–324

    CAS  PubMed  Google Scholar 

  9. Chatterjee A, Das D, Mandal BK, Chowdhury TR, Samanta G, Chakraborti D (1995) Analyst 120:643–650

    Article  Google Scholar 

  10. Bhattacharyya R, Chatterjee D, Nath B, Jana J, Jacks G, Vahter M (2003) Mol Cell Biochem 253:347–355

    Article  CAS  PubMed  Google Scholar 

  11. Gault AG, Davison LE, Lythgoe PR, Polya DA, Abou-Shakra FR, Walker HJ, Chatterjee D (2003) Roy Soc Chem Spec Publ 288:112–126

    Google Scholar 

  12. Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (1998) Nature 395:338–338

    Article  CAS  PubMed  Google Scholar 

  13. McArthur JM (1999) Nature 401:546–547

    Article  CAS  Google Scholar 

  14. Nickson RT, McArthur JM, Ravenscroft P, Burgess W, Ahmed KM (2000) Appl Geochem 15:403–413

    Article  CAS  Google Scholar 

  15. DPHE/BGS http://www.bgs.ac.uk.arsenic/Bangladesh/home.htm

  16. Smith AH, Lingas EO, Rahman M (2000) Bull WHO 78:1093–1103

    CAS  PubMed  Google Scholar 

  17. Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W (2001) Environ Sci Technol 35:2621–2626

    Article  CAS  PubMed  Google Scholar 

  18. Polya DA, Gault AG, Bourne NJ, Lythgoe PR, Cooke DA (2003) Roy Soc Spec Publ 288:127–140

    Google Scholar 

  19. WHO (1993) Guidelines for drinking-water quality, 2nd edn. WHO, Geneva

    Google Scholar 

  20. Nordstrom DK (2003) Science 296:2143–2145

    Article  Google Scholar 

  21. Cances B, Laperche V, Juillot F, Morin G, Vaughan D, Calas G (2004) In: Goldschmidt 2004, Copenhagen, Abstract 974

  22. Aggett J, Kriegman MR (1988) Water Res 22:407–411

    Article  CAS  Google Scholar 

  23. White DE, Hem JD, Waring GA (1963) In: US Geological survey prof paper 440F

  24. Sullivan KA, Aller RC (1996) Geochim Cosmochim Acta 60:1465–1477

    Article  CAS  Google Scholar 

  25. Bhattacharya R, Jana J, Nath B, Sahu SJ, Chatterjee D, Jacks G (2003) Appl Geochem 18:1435–1451

    Article  Google Scholar 

  26. Shraim A, Sekaran NC, Anuradha CD, Hirano S (2002) Appl Organomet Chem 16:202–209

    Article  CAS  Google Scholar 

  27. Farmer JG, Lovell MA (1986) Geochim Cosmochim Acta 50:2059–2067

    Article  CAS  Google Scholar 

  28. Pierce ML, Moore CB (1982) Water Res 16:1247–1253

    Article  CAS  Google Scholar 

  29. Cullen WR, Reimer KJ (1989) Chem Rev 89:713–764

    CAS  Google Scholar 

  30. Oremland RS, Stolz JF (2003) Science 300:939–944

    Article  CAS  PubMed  Google Scholar 

  31. Stolz JF, Oremland RS (1999) FEMS Microbiol Rev 23:615–627

    Article  CAS  PubMed  Google Scholar 

  32. Islam FS, Gault AG, Boothman C, Polya DA, Chatterjee D, Lloyd JR (2004) Nature 430:68–71

    Article  CAS  PubMed  Google Scholar 

  33. Roig-Navarro AF, Martinez-Bravo Y, Lopez FL, Hernandez F (2001) J Chromatogr A 912:319–327

    Article  CAS  PubMed  Google Scholar 

  34. Palacios MA, Gomez M, Camara C, Lopez MA (1997) Anal Chim Acta 340:209–220

    Article  CAS  Google Scholar 

  35. Gallagher PA, Schwegel CA, Wei XY, Creed JT (2001) J Environ Monitor 3:371–376

    Article  CAS  Google Scholar 

  36. Le XC, Yalcin S, Ma M (2000) Environ Sci Technol 34:2342–2347

    Article  CAS  Google Scholar 

  37. Bednar AJ, Garbarino JR, Ranville JF, Wildeman TR (2002) Environ Sci Technol 36:2213–2218

    Article  CAS  PubMed  Google Scholar 

  38. Wilkie JA, Hering JG (1998) Environ Sci Technol 32:657–662

    Article  CAS  Google Scholar 

  39. McCleskey RB, Nordstrom DK, Maest AS (2004) Appl Geochem 19:995–1009

    Article  CAS  Google Scholar 

  40. Ariza JLG, Morales E, Sanchez-Rodas D, Giraldez I (2000) TrAC Trends Anal Chem 19:200–209

    Article  CAS  Google Scholar 

  41. Bandyopadhyay RK (2002) J Geol Soc India 59:33–46

    CAS  Google Scholar 

  42. Charlet L, Chakraborty S, Appello T, Latscha AA, Chatterjee D, Mallick B (2003) J de Physique IV 107:285–288

    CAS  Google Scholar 

  43. Chatterjee D, Chakraborty S, Nath B, Jana J, Bhattacharyya R, Mallik SB, Charlet L (2003) J de Physique IV 107:293–296

    CAS  Google Scholar 

  44. Goessler W, Rudorfer A, Mackey EA, Becker PR, Irgolic KJ (1998) Appl Organomet Chem 12:491–501

    Article  CAS  Google Scholar 

  45. Polya DA (1998) TRPEAK, unpublished manuscript, Department of Earth Sciences, University of Manchester

  46. Polya (1999) DBSCORR, unpublished manuscript, Department of Earth Sciences, University of Manchester

  47. Townsend AT (1999) Fresenius J Anal Chem 364:521–526

    Article  CAS  Google Scholar 

  48. Wilkin RT, Wallschläger D, Ford RG (2003) Geochem Trans 4:1–7

    Article  Google Scholar 

  49. Smieja JA, Wilkin RT (2003) J Environ Monitor 5:913–916

    Article  CAS  Google Scholar 

  50. Miller JC, Miller JN (1993) Statistics for analytical chemistry, 3rd edn. Ellis Horwood, London

    Google Scholar 

  51. Davison W, Seed G (1983) Geochim Cosmochim Acta 47:67–79

    Article  CAS  Google Scholar 

  52. Wogelius RA, Walther JV (1992) Chem Geol 97:101–112

    Article  CAS  Google Scholar 

  53. Cherry JA, Shaikh AU, Tallman DE, Nicholson RV (1979) J Hydrol 43:373–392

    Article  CAS  Google Scholar 

  54. Lindberg RD, Runnels DD (1984) Science 225:925–927

    CAS  Google Scholar 

  55. Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, Rotterdam

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by EPSRC grant GR/S30207/01. AGG acknowledges receipt of a NERC/CASE (CETAC Technologies) PhD studentship. Financial support from RGNDWM, Govt. of India and IFCPAR is duely acknowledged to carry out the research work. The corresponding author also acknowledges University support for collaborative work. We thank Paul Lythgoe, Cath Davies, Alastair Bewsher and Tim Jenson for assistance with analysis and Roy Wogelius for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gault, A.G., Jana, J., Chakraborty, S. et al. Preservation strategies for inorganic arsenic species in high iron, low-Eh groundwater from West Bengal, India. Anal Bioanal Chem 381, 347–353 (2005). https://doi.org/10.1007/s00216-004-2861-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2861-1

Keywords

Navigation